:-The upper
surface of a table is like trapezium. The length
of the parallel sides of this table is 7 m and 9 m
and the distance between the parallel sides of
this table is 3 m. The area of the upper surface
of the table will be: –
24 वर्गमीटर Sq.Metre
48 वर्गमीटर Sq. Metre
24 मीटर Metre
32 वर्गमीटर Sq.Metre
Let′s understand the question.
★ This question says that the parallel sides measure 7 m and 9 m. The distance between the two parallel sides is 3 m. We have to find out the area of trapizum..!
Let’s solve this problem..!
[tex]\large\underline{\sf{Given- }}[/tex]
A trapezium whose
and
[tex]\large\underline{\sf{To\:Find – }}[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that,
We know that
[tex]\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2} (sum \: of \parallel \: sides) \times distance \: beween \: them[/tex]
[tex]\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2} \times (9 + 7) \times 3[/tex]
[tex]\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2} \times 16 \times 3 [/tex]
[tex]\bf\implies \:Area_{(trapezium)} = 24 \: {m}^{2} [/tex]
Additional Information :-
[tex] \boxed{ \bf \: Area_{(square)} = {(side)}^{2}} [/tex]
[tex] \boxed{ \bf \: Area_{(rectangle)} = length \times breadth}[/tex]
[tex] \boxed{ \bf \: Area_{(circle)} = \pi \: {r}^{2}} [/tex]
[tex] \boxed{ \bf \: Area_{(rhombus)} = base \times height}[/tex]
[tex] \boxed{ \bf \: Area_{(parallelogram)} = base \times height}[/tex]