# The scores obtained by Alice in a quiz competition having 5 rounds is listed below. Positive points aregiven for every corre

The scores obtained by Alice in a quiz competition having 5 rounds is listed below. Positive points are
given for every correct answer while negative points are given for every incorrect answer.
Rounds
Scores
Round 1
10
Round 2
– 20
Round 3
?
Round 4
40
Round 5
-5
Final Score
60
What was Alice’s score in Round 3?

### 1 thought on “The scores obtained by Alice in a quiz competition having 5 rounds is listed below. Positive points are<br />given for every corre”

1. [tex]\boxed{\large\textsf{\${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2h ( l + b )}\$}\\\\\large\textsf{\${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2 ( lb + bh + hl )}\$}\\\\\large\textsf{\${\large\textsf{Volume}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{l×b×h}\$}\\\\\large\textsf{\${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{4×l²}\$}\\\\\large\textsf{\${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{6 × l²}\$}}[/tex]

[tex]\large\textsf{\${\large\textsf{Volume}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{l²}\$}[/tex]

[tex]\large\textsf{\${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{2 × πrh}\$}[/tex]

[tex]\large\textsf{\${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{2πr × ( r + h )}\$}[/tex]

[tex]\large\textsf{\${\large\textsf{Volume}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{πr²h}\$}[/tex]

[tex]\large\textsf{\${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\textsf{πrl}\$}[/tex]

[tex]\large\textsf{\${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\textsf{πr × ( r + l )}\$}[/tex]

[tex]\large\textsf{\${\large\textsf{Volume}}_{\large\textsf{( \; Cone \; )}} \$} \large\textsf{ =\$\cfrac{\large\textsf{1}}{\large\textsf{3}}\$}\large\textsf{× πr²h}[/tex]

[tex]\large\textsf{\${\large\textsf{T.S.A.}}_{\large\textsf{( \; Sphere \; )}} = \large\textsf{4πr²}\$}[/tex]

[tex]\large\textsf{\${\large\textsf{Volume}}_{\large\textsf{( \; Sphere \; )}} \$} \large\textsf{ =\$\cfrac{\large\textsf{4}}{\large\textsf{3}}\$}\large\textsf{× πr³}[/tex]