Q20.If a^2 + b^2 + c^2 = 155 and a + b + c = 21, find ab + bc + ca.

Q20.If a^2 + b^2 + c^2 = 155 and a + b + c = 21, find ab + bc + ca.

About the author
Madelyn

2 thoughts on “Q20.If a^2 + b^2 + c^2 = 155 and a + b + c = 21, find ab + bc + ca.”

  1. Step-by-step explanation:

    2

    +b

    2

    +c

    2

    =250 & ab+bc+ac=3, find a+b+c

    → the general formula

    (a+b+c)

    2

    =a

    2

    +b

    2

    +c

    2

    +2(ab+bc+ac)

    =250+2(3)

    =250+6

    ∴(a+b+c)

    2

    =256

    ∴a+b+c=

    256

    ∴a+b+c=16

    Hope it helped!!

    Reply
  2. Answer:

    since,

    a+b+c = 21

    => (a+b+c)² = 21²

    => a²+b²+c²+2(ab+bc+ca) = 441 (identity)

    => 155 + 2 (ab+bc+ca) = 441 (given)

    => ab+bc+ca = (441-155)/2

    => ab + bc + ca = 286/2

    => ab + bc + ca = 143

    Hence, our answer is 143!

    Hope you understood the method!

    Reply

Leave a Reply to Margaret Cancel reply