Step-by-step explanation: 2 +b 2 +c 2 =250 & ab+bc+ac=3, find a+b+c → the general formula (a+b+c) 2 =a 2 +b 2 +c 2 +2(ab+bc+ac) =250+2(3) =250+6 ∴(a+b+c) 2 =256 ∴a+b+c= 256 ∴a+b+c=16 Hope it helped!! Reply
Answer: since, a+b+c = 21 => (a+b+c)² = 21² => a²+b²+c²+2(ab+bc+ca) = 441 (identity) => 155 + 2 (ab+bc+ca) = 441 (given) => ab+bc+ca = (441-155)/2 => ab + bc + ca = 286/2 => ab + bc + ca = 143 Hence, our answer is 143! Hope you understood the method! Reply
Step-by-step explanation:
2
+b
2
+c
2
=250 & ab+bc+ac=3, find a+b+c
→ the general formula
(a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ac)
=250+2(3)
=250+6
∴(a+b+c)
2
=256
∴a+b+c=
256
∴a+b+c=16
Hope it helped!!
Answer:
since,
a+b+c = 21
=> (a+b+c)² = 21²
=> a²+b²+c²+2(ab+bc+ca) = 441 (identity)
=> 155 + 2 (ab+bc+ca) = 441 (given)
=> ab+bc+ca = (441-155)/2
=> ab + bc + ca = 286/2
=> ab + bc + ca = 143
Hence, our answer is 143!
Hope you understood the method!