If the sum of the zeros of the polynomial p(x) = (a²+a)x²+ 45x + 6a is reciprocal of the other, find the value of a.​

If the sum of the zeros of the polynomial p(x) = (a²+a)x²+ 45x + 6a is reciprocal of the other, find the value of a.​

About the author
Sophia

2 thoughts on “If the sum of the zeros of the polynomial p(x) = (a²+a)x²+ 45x + 6a is reciprocal of the other, find the value of a.​”

  1. Answer:

    Productofzeroes=ac</p><p>α×

    α

    1

    =

    a

    2

    +9

    6a

    α×α1

    =a2+96a</p><p>a

    2

    +9

    =6aa2+9

    =6a</p><p>a

    2

    −6a+9

    =0a2−6a+9

    =0</p><p>a

    2

    −3a−3a+9

    =0a2−3a−3a+9

    =0a(a−3)−3(a−3)

    =0a(a−3)−3(a−3)

    =0(a−3)(a−3)

    =0(a−3)(a−3)

    =0

    ⇒a−3=0

    ⇒a=3</p><p>Therefore, Valueofais3.</p><p>

    Reply
  2. [tex]\Huge\bf\maltese{\underline{\green{Answer°᭄}}}\maltese[/tex]

    [tex]\implies[/tex][tex]\large\bf{\underline{\red{VERIFIED✔}}}[/tex]

    [tex]Product \: of \: zeroes=ac

    \alpha\times\frac{1}{\alpha} \\ \\ =\frac{6a}{a^2+9}α×α1 \\ \\ =a2+96a

    a^2+9 \\ \\ =6aa2+9 \\ \\ =6a

    a^2-6a+9 \\ \\ =0a2−6a+9 \\ \\ =0

    a^2-3a-3a+9 \\ \\ =0a2−3a−3a+9 \\ \\ =0a(a-3)-3(a-3) \\ \\ =0a(a−3)−3(a−3) \\ \\ =0(a-3)(a-3) \\ \\ =0(a−3)(a−3) \\ \\ =0 \\ \\ ⇒ a – 3 = 0 \\ \\ ⇒ a = 3

    Therefore, Value of a is 3.

    [/tex]

    [tex] \boxed{I \:Hope\: it’s \:Helpful}[/tex]

    [tex]{\sf{\bf{\blue{@ℐᴛz ᴅɪɴᴜ࿐}}}}[/tex]

    Reply

Leave a Reply to Piper Cancel reply