if the diagonal of a square is 12√2cm find its side. (1)12. (2)24. (3) 12√2. (4)2. About the author Sophia
Answer: Correct option is C 48 cm Perimeter of the square (P)= 48 units Step-by-step explanation: Let side ofasquare=aunits Diagonal(d)=12√2units/*given Now , \boxed {Area \: of \the \: square (A)\\=a^{2}=\frac{d^{2}}{2}} a^{2} = \frac{(12\sqrt{2})^{2}}{2} \implies a^{2}=\frac{12^{2}\times 2}{2} \implies a^2 = (12\:unit)^{2} \implies a = \sqrt{12^{2}} \implies a = 12\: units Perimeter \: of \: the \: square (P) = 4r\\=4 \times 12 \:units \implies P = 48 \: units Therefore, Perimeterofthesquare(P)=48units Reply
Answer:
Correct option is
C
48 cm
Perimeter of the square (P)= 48 units
Step-by-step explanation:
Let side ofasquare=aunits
Diagonal(d)=12√2units/*given
Now ,
\boxed {Area \: of \the \: square (A)\\=a^{2}=\frac{d^{2}}{2}}
a^{2} = \frac{(12\sqrt{2})^{2}}{2}
\implies a^{2}=\frac{12^{2}\times 2}{2}
\implies a^2 = (12\:unit)^{2}
\implies a = \sqrt{12^{2}}
\implies a = 12\: units
Perimeter \: of \: the \: square (P) = 4r\\=4 \times 12 \:units
\implies P = 48 \: units
Therefore,
Perimeterofthesquare(P)=48units