If a and ß are the zeroes of thebollowing Polynomial f(c), suchthat a- B = 1, than find the valueof af (x)=x²_50+k About the author Sophia
We have, f(x)=x2−p(x+1)−c=0 f(x)=x2−px−(p+c)=0 Since, α,β are the zeroes of the above polynomial. So, α+β=p αβ=−(p+c) Since, (α+1)(β+1)=0 αβ+α+β+1=0 −p−c+p+1=0 −c+1=0 c=1 Reply
We have,
f(x)=x2−p(x+1)−c=0
f(x)=x2−px−(p+c)=0
Since,
α,β are the zeroes of the above polynomial.
So,
α+β=p
αβ=−(p+c)
Since,
(α+1)(β+1)=0
αβ+α+β+1=0
−p−c+p+1=0
−c+1=0
c=1