Given :- 3a + 2b = 23 and ab = 20 To find :- 9a^2 + 4b^2 Solution :- Using identity , (A+B)^2 = A^2 + B^2 + 2AB 3a + 2b = 23 (given) Squaring on both sides, ==> (3a + 2b)^2 = 23^2 ==> 9a^2 + 4b^2 + 2 * 3a * 2b = 529 ==> 9a^2 + 4b^2 + 12ab = 529 ==> 9a^2 + 4b^2 = 529 – 12ab ==> 9a^2 + 4b^2 = 529 – 12 x 20 (given, ab = 20) ==> 9a^2 + 4b^2 = 529 – 240 Therefore, the value of the expression 9a^2 + 4b^2 = 289 Reply
Given :- 3a + 2b = 23 and ab = 20
To find :- 9a^2 + 4b^2
Solution :- Using identity , (A+B)^2 = A^2 + B^2 + 2AB
3a + 2b = 23 (given)
Squaring on both sides,
==> (3a + 2b)^2 = 23^2
==> 9a^2 + 4b^2 + 2 * 3a * 2b = 529
==> 9a^2 + 4b^2 + 12ab = 529
==> 9a^2 + 4b^2 = 529 – 12ab
==> 9a^2 + 4b^2 = 529 – 12 x 20 (given, ab = 20)
==> 9a^2 + 4b^2 = 529 – 240
Therefore, the value of the expression 9a^2 + 4b^2 = 289