if 3a + 2b = 23 and ab = 20 , find 9a^2 + 4b^ 2 (using identities)​

By Ruby

if 3a + 2b = 23 and ab = 20 , find 9a^2 + 4b^ 2 (using identities)​

About the author
Ruby

1 thought on “if 3a + 2b = 23 and ab = 20 , find 9a^2 + 4b^ 2 (using identities)​”

  1. Given :- 3a + 2b = 23 and ab = 20

    To find :- 9a^2 + 4b^2

    Solution :- Using identity , (A+B)^2 = A^2 + B^2 + 2AB

    3a + 2b = 23 (given)

    Squaring on both sides,

    ==> (3a + 2b)^2 = 23^2

    ==> 9a^2 + 4b^2 + 2 * 3a * 2b = 529

    ==> 9a^2 + 4b^2 + 12ab = 529

    ==> 9a^2 + 4b^2 = 529 – 12ab

    ==> 9a^2 + 4b^2 = 529 – 12 x 20 (given, ab = 20)

    ==> 9a^2 + 4b^2 = 529 – 240

    Therefore, the value of the expression 9a^2 + 4b^2 = 289

    Reply

Leave a Comment