If x=2+√3 then [tex] {x}^{2} + \frac{1}{ {x}^{2} } – 4(x + \frac{1}{x} )[/tex] About the author Claire
Hey mate! _______________________ Given : x = 2 +[tex] \sqrt{3}[/tex] To find : [tex]x + \frac{1}{x}[/tex] Solution : [tex]\begin{gathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 – \sqrt{3} }{2 – \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 – \sqrt{3} }{(2) {}^{2} – ( \sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 – \sqrt{3} }{4 – 3} \\ \\ \frac{1}{x} = 2 – \sqrt{3} \end{gathered}[/tex] Now, [tex]\begin{gathered}x + \frac{1}{x} \\ \\ = 2 + \sqrt{3} + 2 – \sqrt{3} \\ \\ = 2 + 2 \\ \\ = 4\end{gathered}[/tex] _______________________ Thanks for the question ! ☺️☺️☺️ Reply
Hey mate!
_______________________
Given :
x = 2 +[tex] \sqrt{3}[/tex]
To find :
[tex]x + \frac{1}{x}[/tex]
Solution :
[tex]\begin{gathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 – \sqrt{3} }{2 – \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 – \sqrt{3} }{(2) {}^{2} – ( \sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 – \sqrt{3} }{4 – 3} \\ \\ \frac{1}{x} = 2 – \sqrt{3} \end{gathered}[/tex]
Now,
[tex]\begin{gathered}x + \frac{1}{x} \\ \\ = 2 + \sqrt{3} + 2 – \sqrt{3} \\ \\ = 2 + 2 \\ \\ = 4\end{gathered}[/tex]
_______________________
Thanks for the question !
☺️☺️☺️