If x=2+√3 then
[tex] {x}^{2} + \frac{1}{ {x}^{2} } – 4(x + \frac{1}{x} )[/tex]


If x=2+√3 then
[tex] {x}^{2} + \frac{1}{ {x}^{2} } – 4(x + \frac{1}{x} )[/tex]

About the author
Claire

1 thought on “If x=2+√3 then <br />[tex] {x}^{2} + \frac{1}{ {x}^{2} } – 4(x + \frac{1}{x} )[/tex]<br /><br /><br />​”

  1. Hey mate!

    _______________________

    Given :

    x = 2 +[tex] \sqrt{3}[/tex]

    To find :

    [tex]x + \frac{1}{x}[/tex]

    Solution :

    [tex]\begin{gathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 – \sqrt{3} }{2 – \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 – \sqrt{3} }{(2) {}^{2} – ( \sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 – \sqrt{3} }{4 – 3} \\ \\ \frac{1}{x} = 2 – \sqrt{3} \end{gathered}[/tex]

    Now,

    [tex]\begin{gathered}x + \frac{1}{x} \\ \\ = 2 + \sqrt{3} + 2 – \sqrt{3} \\ \\ = 2 + 2 \\ \\ = 4\end{gathered}[/tex]

    _______________________

    Thanks for the question !

    ☺️☺️☺️

    Reply

Leave a Reply to Kinsley Cancel reply