Form a quadratic polynomial whose sum and product of zeroes are 3 and -2/5 respectively. LEVEL 3 (3 MARKS) About the author Parker
[tex] \red{\mathfrak{hiiii \: mate}}[/tex] [tex] \alpha + \beta = 3[/tex] [tex] \alpha \beta = \frac{ – 2}{5} [/tex] [tex]quadratic polynomial = k{ {x}^{2} – ( \alpha + \beta )x – ( \alpha \beta )}[/tex] [tex]q.p. = k{ {x}^{2} – 3x + (\frac{ – 2}{5} )}[/tex] taking k=1 [tex]qp = {x}^{2} – 3x – \frac{2}{5} [/tex] [tex]{\green{\underline{\mathfrak {\green{MARK \: ME \: BRAINLIEST }}}}}[/tex] Reply
Answer:
Step-by-step explanation:
QUADRATIC EQUATIONS
1/5(5x²+13x-6)
where k is real number
[tex] \red{\mathfrak{hiiii \: mate}}[/tex]
[tex] \alpha + \beta = 3[/tex]
[tex] \alpha \beta = \frac{ – 2}{5} [/tex]
[tex]quadratic polynomial = k{ {x}^{2} – ( \alpha + \beta )x – ( \alpha \beta )}[/tex]
[tex]q.p. = k{ {x}^{2} – 3x + (\frac{ – 2}{5} )}[/tex]
taking k=1
[tex]qp = {x}^{2} – 3x – \frac{2}{5} [/tex]
[tex]{\green{\underline{\mathfrak {\green{MARK \: ME \: BRAINLIEST }}}}}[/tex]