Find the area of a triangle using heron’s formula whose sides are- A = 12cm B = 24 C=14cm

Find the area of a triangle using heron’s formula whose sides are- A = 12cm B = 24 C=14cm

About the author
Lydia

2 thoughts on “Find the area of a triangle using heron’s formula whose sides are- A = 12cm B = 24 C=14cm”

  1. Given: Sides of a triangle are 12cm,24cm and 14cm.

    To find: Area of the triangle using Heron’s formula.

    Solution: S = 12+24+14/2 = 25cm.

    Area of the triangle =

    [tex] s\sqrt{(s – a)(s – b)(s – c)} \: \: \: \: \: \: \: \\ = > 25\sqrt{(25-12)(25-24)(25-14)} \\ = > 25 \sqrt{13 \times 1 \times 11} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = > 25\sqrt{163} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = > 319.17 {cm}^{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

    Hope it helps you.

    Reply
  2. Answer:

    side A=12cm , side B=24cm, side C=14 cm

    perimeter of 3 sides= 12+24+14= 50cm

    semi-perimeter = 50÷2 =25cm

    area of triangle = s√(s-a)(s-b)(s-c)

    =25√(25-12)(25-24)(25-14)

    25√13×1×11

    25√143

    √3575

    =59.7913

    Reply

Leave a Reply to Mackenzie Cancel reply