Find the area of a triangle using heron’s formula whose sides are- A = 12cm B = 24 C=14cm About the author Lydia
Given: Sides of a triangle are 12cm,24cm and 14cm. To find: Area of the triangle using Heron’s formula. Solution: S = 12+24+14/2 = 25cm. Area of the triangle = [tex] s\sqrt{(s – a)(s – b)(s – c)} \: \: \: \: \: \: \: \\ = > 25\sqrt{(25-12)(25-24)(25-14)} \\ = > 25 \sqrt{13 \times 1 \times 11} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = > 25\sqrt{163} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = > 319.17 {cm}^{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex] Hope it helps you. Reply
Answer: side A=12cm , side B=24cm, side C=14 cm perimeter of 3 sides= 12+24+14= 50cm semi-perimeter = 50÷2 =25cm area of triangle = s√(s-a)(s-b)(s-c) =25√(25-12)(25-24)(25-14) 25√13×1×11 25√143 √3575 =59.7913 Reply
Given: Sides of a triangle are 12cm,24cm and 14cm.
To find: Area of the triangle using Heron’s formula.
Solution: S = 12+24+14/2 = 25cm.
Area of the triangle =
[tex] s\sqrt{(s – a)(s – b)(s – c)} \: \: \: \: \: \: \: \\ = > 25\sqrt{(25-12)(25-24)(25-14)} \\ = > 25 \sqrt{13 \times 1 \times 11} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = > 25\sqrt{163} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ = > 319.17 {cm}^{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
Hope it helps you.
Answer:
side A=12cm , side B=24cm, side C=14 cm
perimeter of 3 sides= 12+24+14= 50cm
semi-perimeter = 50÷2 =25cm
area of triangle = s√(s-a)(s-b)(s-c)
=25√(25-12)(25-24)(25-14)
25√13×1×11
25√143
√3575
=59.7913