19) In a quadrilateral three angles are in the ratio 3 : 3:1 & one of theangle is 80″,then find the other angles. About the author Parker
Answer: ∠ A = 120 ° ∠ B = 120 ° ∠ C = 40 ° ∠ D = 80 ° Explanation: Given: A quadrilateral in which: Ratio of three angles = 3 : 3 : 1 Measure of 4th angle = 80 ° To find: The measure of the other three angles. Proof: P.F.A the figure below for reference. Let the given quadrilateral be ABCD. According to the question, Let: ∠ A = 3x ∠ B = 3x ∠ C = x ∠ D = 80 ° Now, ∠ A + ∠ B + ∠ C + ∠ D = 360 ° [ Sum of the interior angles of a quadrilateral = 360 ° ] Substituting the values of ∠A, ∠B, ∠C, & ∠D, we get: = 3x + 3x + x + 80 ° = 360 ° ⇒ 7x + 80 ° = 360 ° ⇒ 7x = (360 – 80) ° ⇒ 7x = 280 ° ⇒ x = ([tex]\frac{280}{7}[/tex]) ° ⇒ x = 40 ° Substituting the value of x in ∠A, ∠B, ∠C we get: ∠ A = 3(40) = 120 ° ∠ B = 3(40) = 120 ° ∠ C = x = 40 ° Hence, ∠ A = 120 ° ∠ B = 120 ° ∠ C = 40 ° ∠ D = 80 ° [Given] Proved. Hope you got that., Thank You. Reply
[tex]\Large{\underbrace{\sf{\purple{Required\:Answer:}}}}[/tex] ⛦Given, ratio is 3:3:1 and fourth angle is 80°. Sum of all the angles of the quadrilateral is 360°. Let the ratio numbers be: ⟼3x, 3x and 1x ⟼3x + 3x + 1x + 80° = 360° ⟼7x + 80° = 360° ⟼7x = 360° – 80° ⟼7x = 280° 3x = 3 / 7 x 280° = 3 x 40 = 120° 3x = 3 / 7 x 280° = 3 x 40 = 120° 1x = 1 / 7 x 280° = 1 x 40 = 40° ↬Therefore, the four angles are 120°, 120°, 40° and 80°. Reply
Answer:
Explanation:
Given:
To find:
The measure of the other three angles.
Proof:
P.F.A the figure below for reference.
Let the given quadrilateral be ABCD.
According to the question, Let:
Now,
∠ A + ∠ B + ∠ C + ∠ D = 360 °
[ Sum of the interior angles of a quadrilateral = 360 ° ]
Substituting the values of ∠A, ∠B, ∠C, & ∠D, we get:
= 3x + 3x + x + 80 ° = 360 °
⇒ 7x + 80 ° = 360 °
⇒ 7x = (360 – 80) °
⇒ 7x = 280 °
⇒ x = ([tex]\frac{280}{7}[/tex]) °
⇒ x = 40 °
Substituting the value of x in ∠A, ∠B, ∠C we get:
Hence,
Proved.
Hope you got that.,
Thank You.
[tex]\Large{\underbrace{\sf{\purple{Required\:Answer:}}}}[/tex]
⛦Given,
ratio is 3:3:1 and fourth angle is 80°.
Sum of all the angles of the quadrilateral is 360°.
Let the ratio numbers be:
⟼3x, 3x and 1x
⟼3x + 3x + 1x + 80° = 360°
⟼7x + 80° = 360°
⟼7x = 360° – 80°
⟼7x = 280°
3x = 3 / 7 x 280°
= 3 x 40
= 120°
3x = 3 / 7 x 280°
= 3 x 40
= 120°
1x = 1 / 7 x 280°
= 1 x 40
= 40°