write the extended form of( x+y cube) and using this indentifier find (102)cube About the author Alaia
1061208 Let us rewrite (102)3 as (100+2)3 Now using the identity (a+b)3=a3+b3+3ab(a+b), we get(100+2)3=1003+23+[(3×100×2)(100+2)]=1000000+8+(600×102)=1000000+8+61200=1061208 Hence, (102)3=1061208 Assalamu alaikkum warahmatullah wabarakatuhu sis kaise ho aap khayal rakh na apna sis Reply
1061208
Let us rewrite (102)3 as (100+2)3
Now using the identity (a+b)3=a3+b3+3ab(a+b),
we get(100+2)3=1003+23+[(3×100×2)(100+2)]=1000000+8+(600×102)=1000000+8+61200=1061208
Hence, (102)3=1061208
Assalamu alaikkum warahmatullah wabarakatuhu sis
kaise ho aap
khayal rakh na apna sis
Answer:
(x+y)^3 = x ^3+ y^3 + 3x^2y + 3xy^2
(100 +2 )^3
1000000 + 8 + 60000+ 1200