write a two digit number,the sum of two digits of which is 14 and if 29 is substracted from the number,the two digits will be equa

write a two digit number,the sum of two digits of which is 14 and if 29 is substracted from the number,the two digits will be equal.Let us form the simultaneous equation by solving them and let us see what will be the 2 digit number.

NO SPAM IT WILL REPORTED​

About the author
Amelia

2 thoughts on “write a two digit number,the sum of two digits of which is 14 and if 29 is substracted from the number,the two digits will be equa”

  1. Step-by-step explanation:

    Given:

    In a two digit number,the sum of two digits of which is 14 and if 29 is substracted from the number,the two digits will be equal.

    To find:

    What is the two digit number?

    Solution:

    Let the digit at 10s place in the two digits number = X

    The place value of X = 10× X = 10X

    Let the digit at ones place in the two digits number = Y

    The place value of Y = Y×1 = Y

    Then , The two digits number = 10X+Y

    Given that .

    Condition 1:

    The sum of two digits = 14

    X+Y = 14 ————(1)

    Condition 2:

    If 29 is subtracted from the number then the two digits will be equal

    => (10X+Y)-29 =10Z+Z (Z is some digit)

    =>10X+Y-29 = 11Z

    =>10X +Y = 11Z+29——–(2)

    On Subtracting (1) from (2) then

    10X +Y = 11Z +29

    X+Y = 14

    (-)

    _______________

    9X +0 = 11Z +29-14

    ________________

    =>9X = 11Z+29-14

    =>9X = 11Z +15

    =>X = (11Z+15)/9

    If Z = 1 then X = (11+15)/9 = 26/9

    The digit can not be a fraction

    If Z = 2 then X = (22+15)/9 = 37/9

    If we continue like this ..

    If Z = 6 then X = (66+15)/9 = 81/9 = 9

    So we get a natural number

    Therefore, X = 9

    On Substituting the value of X in (1) then

    =>9+Y = 14

    =>Y = 14-9

    =>Y = 5

    X = 9 and Y = 5

    Answer:

    The required two digit number is 95

    Check:

    Sum of the digits = 9+5 = 14

    If 29 subtracted from it = 95-29 = 66

    The both digits are equal.

    Verified the given relations

    Reply
  2. Answer:

    [tex]\huge\ \sf{\red {[[«\: คꈤ \mathfrak Sฬєя \: » ]]}}[/tex]

    The required two digit number is 95

    ______________________________________________________

    [tex]\sf \purple{Given:}[/tex]

    [tex]\sf In \: a \: two \:digit \:number, \:the \: sum \: of \: two \: digits [/tex] [tex]\sf of \:which \:is \:14 \:and \: if \:29 \:is \:substracted[/tex] [tex]\sf \:from \: the \:number, \:the \: two \:digits \: will \: be \: equal.[/tex]

    [tex]\sf\orange{To \:find:}[/tex]

    [tex]\sf the \: two \:digit \: number[/tex]

    [tex]\huge{\underline{\mathtt{\red{S}\pink{O}\green{L}\blue{U}\purple{T}\orange{I}\red{O}{N}}}}[/tex]

    [tex]\sf Let \:the \:digit \: at \: 10s \: place \: in \:the \: two \: digits \: number = X[/tex]

    [tex]\sf The \: place \:value \:of \:X = 10 \:× \:X = 10X[/tex]

    [tex]\sf Let \:the \:digit \:at \:ones \: place \: in \: the \: two \: digits \: number = Y[/tex]

    [tex]\sf The \:place \: value \:of Y = Y×1 = Y[/tex]

    [tex]\sf Then , \: The \: two \:digits \: number = 10X+Y[/tex]

    [tex]\sf\blue{Given \:that:}[/tex]

    [tex]\sf Case -1:[/tex]

    [tex]\sf The \:sum \:of \: two \: digits = 14[/tex]

    [tex]\sf X+Y = 14 ————(1)[/tex]

    [tex]\sf Case -2:-[/tex]

    [tex]\sf If \:29 \:is \: subtracted \:from \:the \:number \: then \: the \: two \:digits \:will \:be \: equal[/tex]

    [tex]\sf ⟹ (10X+Y)-29 =10D+D (D \:is \: some \: digit)[/tex]

    [tex]\sf ⟹ 10X+Y-29 = 11D[/tex]

    [tex]\sf ⟹ 10X +Y = 11D+29——–(2) [/tex]

    [tex]\sf By \:Subtracting \: (1) \: from \:(2) \:we \: get [/tex]

    [tex]\sf 10X +Y = 11D +29[/tex]

    [tex]\sf X+Y = 14[/tex]

    (-)

    _______________

    [tex]\sf 9X +0 = 11D +29-14[/tex]

    ________________

    [tex]\sf ⟹ 9X = 11D+29-14[/tex]

    [tex]\sf ⟹ 9X = 11D +15[/tex]

    ⟹ [tex]\ X = \dfrac{11D+15}{9}[/tex]

    If D = 1 then [tex]\ X= {\dfrac{11+15}{9} = \dfrac{26}{9}}[/tex]

    [tex]\sf The \:digit \: can \:not \:be \: a \: fraction [/tex]

    If D = 2 then [tex]\ X= {\dfrac{22+15}{9} = \dfrac{37}{9}}[/tex]

    [tex]\sf If \: we \: continue \: like \: this …[/tex]

    If D = 6 then [tex]\ X= {\dfrac{66+15}{9} = \dfrac{81}{9}}= 9[/tex]

    [tex]\sf So \: we \:get \: a \: natural \: number [/tex]

    [tex]\sf Therefore, \: X = 9[/tex]

    [tex]\sf putting \: the \:value \: of \: X \: in \: (1) ,we \: get[/tex]

    [tex]\sf ⟹ 9+Y = 14[/tex]

    [tex]\sf ⟹ Y = 14-9[/tex]

    [tex]\sf ⟹Y = 5[/tex]

    [tex]\sf X = 9 \:and Y = 5[/tex]

    [tex]\sf The \: required \:two \:digit \:number \:is \:95[/tex]

    Reply

Leave a Reply to Reagan Cancel reply