when x³+2x²-kx+4 is “divided” by x-2 the remainder is k. Find the value of constant k.(division) About the author Alice
Answer: Correct option is A 6 When x 3 +3x 2 −kx+4 is divided by (x−2), the remainder is 2k ∴(x 3 +3x 2 −kx+4)−2 is exactly divisible by (x−2) ⇒x=2 will satisfy the expression [x 3 +3x 2 −kx+4−2k] ⇒ (2) 3 +3(2) 2 −k(2)+4−2k=0 ⇒ 8+12−2k+4−2k=0 ⇒24−4k=0 ⇒ k= 4 24 =6 Reply
Answer:
Correct option is
A
6
When x
3
+3x
2
−kx+4 is divided by (x−2), the remainder is 2k
∴(x
3
+3x
2
−kx+4)−2 is exactly divisible by (x−2)
⇒x=2 will satisfy the expression [x
3
+3x
2
−kx+4−2k]
⇒ (2)
3
+3(2)
2
−k(2)+4−2k=0
⇒ 8+12−2k+4−2k=0
⇒24−4k=0
⇒ k=
4
24
=6