what is the difference between simple interest and compound interest for 2 years at the rate of 5 percent on RS.1000? About the author Alexandra
Given :- Principal = ₹1000 Time = 2 years Rate% = 5% Aim :- To find the difference between Compound interest and Simple interest Simple interest :- Formula to use :- [tex]\longrightarrow \sf Simple \: interest = \dfrac{Principal \times Rate \times Time}{100}[/tex] Substituting the values, [tex]\implies \sf Simple\: Interest = \dfrac{1000 \times 5 \times 2}{100}[/tex] Cancelling, [tex]\implies \sf Simple \: interest = \dfrac{10\not0\not0 \times 5 \times 2}{1\not0\not0}[/tex] [tex]\implies \sf Simple \: interest = 10 \times 5 \times 2[/tex] [tex]\implies \sf Simple \: interest = 100[/tex] Compound interest :- In order to find the compound interest, we first have to find the amount. Formula to use :- [tex]\longrightarrow \sf Amount = Principal\bigg( 1 + \dfrac{rate\%}{100} \bigg)^{time}[/tex] [tex]\longrightarrow \sf Compound \: interest = (Amount) – (Principal)[/tex] Substituting the values, [tex]\implies \sf Amount = 1000\bigg(1 + \dfrac{5}{100} \bigg)^{2}[/tex] Taking LCM = 100, [tex]\implies \sf Amount = 1000\bigg(\dfrac{100 + 5}{100} \bigg)^{2}[/tex] [tex]\implies \sf Amount = 1000\bigg(\dfrac{105}{100} \bigg)^{2}[/tex] Reducing the fraction to the lowest terms, [tex]\implies \sf Amount = 1000\bigg(\dfrac{21}{20} \bigg)^{2}[/tex] [tex]\implies \sf Amount = 1000 \times \dfrac{21}{20} \times \dfrac{21}{20}[/tex] [tex]\implies \sf Amount = 10\not0\not0 \times \dfrac{21}{2\not0} \times \dfrac{21}{2\not0}[/tex] Reducing to the lowest terms, [tex]\implies \sf Amount = 5 \times 21 \times \dfrac{21}{2}[/tex] [tex]\implies \sf Amount = 1102.5[/tex] Now that we have the value of the Amount, the compound interest will be :- [tex]\implies \sf 1102.5 – 1000[/tex] [tex]\implies \sf 102.5[/tex] Difference :- The difference between the compound interest and the simple interest will be :- [tex]\implies \sf 102.5 – 100[/tex] [tex]\implies \sf 2.5[/tex] Therefore the difference is ₹2.5 Some more formulas :- When interest is compounded half yearly :- [tex]\longrightarrow \sf Amount = Prinicipal\bigg(1 + \dfrac{rate\%}{200} \bigg)^{2\times time}[/tex] When the interest is compounded quarterly :- [tex]\longrightarrow \sf Amount = Prinicipal\bigg(1 + \dfrac{rate\%}{400} \bigg)^{4 \times time}[/tex] Reply
Given :-
Aim :-
Simple interest :-
Formula to use :-
[tex]\longrightarrow \sf Simple \: interest = \dfrac{Principal \times Rate \times Time}{100}[/tex]
Substituting the values,
[tex]\implies \sf Simple\: Interest = \dfrac{1000 \times 5 \times 2}{100}[/tex]
Cancelling,
[tex]\implies \sf Simple \: interest = \dfrac{10\not0\not0 \times 5 \times 2}{1\not0\not0}[/tex]
[tex]\implies \sf Simple \: interest = 10 \times 5 \times 2[/tex]
[tex]\implies \sf Simple \: interest = 100[/tex]
Compound interest :-
In order to find the compound interest, we first have to find the amount.
Formula to use :-
[tex]\longrightarrow \sf Amount = Principal\bigg( 1 + \dfrac{rate\%}{100} \bigg)^{time}[/tex]
[tex]\longrightarrow \sf Compound \: interest = (Amount) – (Principal)[/tex]
Substituting the values,
[tex]\implies \sf Amount = 1000\bigg(1 + \dfrac{5}{100} \bigg)^{2}[/tex]
Taking LCM = 100,
[tex]\implies \sf Amount = 1000\bigg(\dfrac{100 + 5}{100} \bigg)^{2}[/tex]
[tex]\implies \sf Amount = 1000\bigg(\dfrac{105}{100} \bigg)^{2}[/tex]
Reducing the fraction to the lowest terms,
[tex]\implies \sf Amount = 1000\bigg(\dfrac{21}{20} \bigg)^{2}[/tex]
[tex]\implies \sf Amount = 1000 \times \dfrac{21}{20} \times \dfrac{21}{20}[/tex]
[tex]\implies \sf Amount = 10\not0\not0 \times \dfrac{21}{2\not0} \times \dfrac{21}{2\not0}[/tex]
Reducing to the lowest terms,
[tex]\implies \sf Amount = 5 \times 21 \times \dfrac{21}{2}[/tex]
[tex]\implies \sf Amount = 1102.5[/tex]
Now that we have the value of the Amount, the compound interest will be :-
[tex]\implies \sf 1102.5 – 1000[/tex]
[tex]\implies \sf 102.5[/tex]
Difference :-
The difference between the compound interest and the simple interest will be :-
[tex]\implies \sf 102.5 – 100[/tex]
[tex]\implies \sf 2.5[/tex]
Therefore the difference is ₹2.5
Some more formulas :-
[tex]\longrightarrow \sf Amount = Prinicipal\bigg(1 + \dfrac{rate\%}{200} \bigg)^{2\times time}[/tex]
[tex]\longrightarrow \sf Amount = Prinicipal\bigg(1 + \dfrac{rate\%}{400} \bigg)^{4 \times time}[/tex]