Verify identity a3 + b3 = (a + b) (a2 – ab + b2 )Please answer in LHS = RHS format About the author Mackenzie
Since the expression is derived from (a+b)^3 So let us expand it (a+b)^3 = (a+b) (a+b) (a+b) ={(a+b) (a+b)} (a+b) ={a(a+b) + b(a+b)} (a+b) =(a^2 + ab + ab + b^2) (a+b) =(a^2 + b^2 + 2ab) (a+b) =a^2(a+b) + b^2(a+b) + 2ab(a+b) =a^3 + a^2b + ab^2 + b^3 + 2a^2b + 2ab^2 =a^3 + b^3 + 3a^2b + 3ab^2 =a^3 + b^3 + 3ab(a+b) Now when we have expanded (a+b)^3 = a^3 + b^3 + 3ab(a+b) We can equate it (a+b)^3 = a^3 + b^3 + 3ab(a+b) (a+b)^3 – 3ab(a+b) = a^3 + b^3 a^3 + b^3 = (a+b)^3 – 3ab(a+b) Reply
Answer: You know that, (a + b)³ = a³ + 3ab(a + b) + b³ then, a³ + b³ = (a + b)³ – 3ab(a + b) = (a + b)[(a + b)² – 3ab] = (a + b)(a² + 2ab + b² – 3ab) = (a + b)(a² – ab + b² ) Reply
Since the expression is derived from (a+b)^3
So let us expand it
(a+b)^3
= (a+b) (a+b) (a+b)
={(a+b) (a+b)} (a+b)
={a(a+b) + b(a+b)} (a+b)
=(a^2 + ab + ab + b^2) (a+b)
=(a^2 + b^2 + 2ab) (a+b)
=a^2(a+b) + b^2(a+b) + 2ab(a+b)
=a^3 + a^2b + ab^2 + b^3 + 2a^2b + 2ab^2
=a^3 + b^3 + 3a^2b + 3ab^2
=a^3 + b^3 + 3ab(a+b)
Now when we have expanded (a+b)^3 = a^3 + b^3 + 3ab(a+b)
We can equate it
(a+b)^3 = a^3 + b^3 + 3ab(a+b)
(a+b)^3 – 3ab(a+b) = a^3 + b^3
a^3 + b^3 = (a+b)^3 – 3ab(a+b)
Answer:
You know that,
(a + b)³ = a³ + 3ab(a + b) + b³
then,
a³ + b³ = (a + b)³ – 3ab(a + b)
= (a + b)[(a + b)² – 3ab]
= (a + b)(a² + 2ab + b² – 3ab)
= (a + b)(a² – ab + b² )