☯GIVEN : a = [tex] \bf {\dfrac{7}{5}} [/tex] b= [tex]\bf {\dfrac{-2}{5}} [/tex] c = [tex] \bf{\dfrac{-1}{3}} [/tex] ☯TO DO : Verify associative law :[tex] \bf {a+(b+c) =(a+b) +c}[/tex] . ➲SOLUTION : ★[tex] \bf{LHS = a+(b+c)}[/tex] Substituting the given values : [tex] : \longrightarrow\sf{LHS = a + (b + c)} \\ \\[/tex] [tex] : \longrightarrow\sf{LHS = \dfrac{7}{5} + \left( \dfrac{ – 2}{5} + \dfrac{ -1 }{3} \right)} \\ \\ [/tex] [tex]: \longrightarrow\sf{LHS = \dfrac{7}{5} + \left( \dfrac{ – 6 + ( – 5)}{15} \right)} \\ \\ [/tex] [tex]: \longrightarrow\sf{LHS = \dfrac{7}{5} + \left( \dfrac{ – 6 – 5}{15} \right)} \\ \\ [/tex] [tex] : \longrightarrow\sf{LHS = \dfrac{7}{5} + \dfrac{ – 11}{15} } \\ \\ [/tex] [tex] : \longrightarrow\sf{LHS = \dfrac{21 + ( – 11)}{15} } \\ \\[/tex] [tex] : \longrightarrow\sf{LHS = \dfrac{21 – 11}{15} } \\ \\[/tex] [tex]: \longrightarrow\sf{LHS = \dfrac{\cancel{10}}{ \cancel{15}} } \\ \\ [/tex] [tex] : \longrightarrow \underline{\boxed{ \purple {\bf{LHS = \dfrac{2}{3}}} }} [/tex] ★[tex] \bf{RHS = (a+b) +c}[/tex] Substituting the given values : [tex] : \longrightarrow\sf{RHS =( a + b ) + c} \\ \\[/tex] [tex] : \longrightarrow\sf{RHS = \left( \dfrac{ 7}{5} + \dfrac{ -2}{5} \right) + \dfrac{ – 1}{3} } \\ \\ [/tex] [tex]: \longrightarrow\sf{RHS = \left( \dfrac{ 7 + ( – 2)}{5} \right) + \dfrac{ – 1}{3} } \\ \\ [/tex] [tex]: \longrightarrow\sf{RHS = \left( \dfrac{ 7 – 2}{5} \right) + \dfrac{ – 1}{3}} \\ \\ [/tex] [tex] : \longrightarrow\sf{RHS = \left( \cancel{\dfrac{ 5}{5}} \right) + \dfrac{ – 1}{3}} \\ \\ [/tex] [tex] : \longrightarrow\sf{RHS = 1+ \dfrac{ – 1}{3} } \\ \\ [/tex] [tex] : \longrightarrow\sf{RHS = \dfrac{3 + ( – 1)}{3} } \\ \\[/tex] [tex] : \longrightarrow\sf{RHS = \dfrac{3 – 1}{3} } \\ \\[/tex] [tex] : \longrightarrow \underline{\boxed{ \purple {\bf{RHS = \dfrac{2}{3}}} }} [/tex] Here, [tex] : \longrightarrow \underline{\huge{\boxed{ \green {\bf{LHS = RHS }}}}} [/tex] [tex]\huge {\pink {\therefore}}[/tex] Verified. Reply
☯GIVEN :
☯TO DO :
➲SOLUTION :
★[tex] \bf{LHS = a+(b+c)}[/tex]
[tex] : \longrightarrow\sf{LHS = a + (b + c)} \\ \\[/tex]
[tex] : \longrightarrow\sf{LHS = \dfrac{7}{5} + \left( \dfrac{ – 2}{5} + \dfrac{ -1 }{3} \right)} \\ \\ [/tex]
[tex]: \longrightarrow\sf{LHS = \dfrac{7}{5} + \left( \dfrac{ – 6 + ( – 5)}{15} \right)} \\ \\ [/tex]
[tex]: \longrightarrow\sf{LHS = \dfrac{7}{5} + \left( \dfrac{ – 6 – 5}{15} \right)} \\ \\ [/tex]
[tex] : \longrightarrow\sf{LHS = \dfrac{7}{5} + \dfrac{ – 11}{15} } \\ \\ [/tex]
[tex] : \longrightarrow\sf{LHS = \dfrac{21 + ( – 11)}{15} } \\ \\[/tex]
[tex] : \longrightarrow\sf{LHS = \dfrac{21 – 11}{15} } \\ \\[/tex]
[tex]: \longrightarrow\sf{LHS = \dfrac{\cancel{10}}{ \cancel{15}} } \\ \\ [/tex]
[tex] : \longrightarrow \underline{\boxed{ \purple {\bf{LHS = \dfrac{2}{3}}} }} [/tex]
★[tex] \bf{RHS = (a+b) +c}[/tex]
[tex] : \longrightarrow\sf{RHS =( a + b ) + c} \\ \\[/tex]
[tex] : \longrightarrow\sf{RHS = \left( \dfrac{ 7}{5} + \dfrac{ -2}{5} \right) + \dfrac{ – 1}{3} } \\ \\ [/tex]
[tex]: \longrightarrow\sf{RHS = \left( \dfrac{ 7 + ( – 2)}{5} \right) + \dfrac{ – 1}{3} } \\ \\ [/tex]
[tex]: \longrightarrow\sf{RHS = \left( \dfrac{ 7 – 2}{5} \right) + \dfrac{ – 1}{3}} \\ \\ [/tex]
[tex] : \longrightarrow\sf{RHS = \left( \cancel{\dfrac{ 5}{5}} \right) + \dfrac{ – 1}{3}} \\ \\ [/tex]
[tex] : \longrightarrow\sf{RHS = 1+ \dfrac{ – 1}{3} } \\ \\ [/tex]
[tex] : \longrightarrow\sf{RHS = \dfrac{3 + ( – 1)}{3} } \\ \\[/tex]
[tex] : \longrightarrow\sf{RHS = \dfrac{3 – 1}{3} } \\ \\[/tex]
[tex] : \longrightarrow \underline{\boxed{ \purple {\bf{RHS = \dfrac{2}{3}}} }} [/tex]
Here,
[tex] : \longrightarrow \underline{\huge{\boxed{ \green {\bf{LHS = RHS }}}}} [/tex]
[tex]\huge {\pink {\therefore}}[/tex] Verified.