the vertices of triangle PQR are P(2,1), Q(-2,3) and R(4,5) Find the equation of the median through the vertex R About the author Sarah
[tex] \sf \underline{Given} : -[/tex] P = (2,1) Q = (-2,3) R = (4,5) [tex] \sf \underline{To \: find} : – [/tex] The equation of the median through the vertex R [tex] \sf \underline{Solution} : – [/tex] The coordinates of the mid point M of the joining AP(x₁, y₁) and Q (x₂, y₂) is [tex] \sf M= \bigg( \dfrac{x_1 + x_2}{2},\dfrac{y_1 + y_2}{2} \bigg)[/tex] Let M be the mid point of PQ [tex] \sf M= \bigg( \dfrac{x_1 + x_2}{2},\dfrac{y_1 + y_2}{2} \bigg)[/tex] [tex] \sf M= \bigg( \dfrac{2 – 2}{2},\dfrac{1 + 3}{2} \bigg)[/tex] [tex] \sf M= \bigg( \dfrac{0}{2},\dfrac{4}{2} \bigg)[/tex] [tex] \sf M= (0,2)[/tex] The slope of medium PM, [tex] \sf m = \dfrac{5 – 2}{4 – 0} = \dfrac{3}{4} [/tex] The Equation of the medium PM is y – y₁ = m(x – x₁) [tex] \sf y – y_1 = m(x – x_1)[/tex] [tex] \sf y -2 = \dfrac{3}{4} (x – 0)[/tex] [tex] \sf 4y – 8 = 3x[/tex] [tex]\boxed{ \sf3x – 4y + 8 = 0}[/tex] Reply
[tex] \sf \underline{Given} : -[/tex]
P = (2,1)
Q = (-2,3)
R = (4,5)
[tex] \sf \underline{To \: find} : – [/tex]
The equation of the median through the vertex R
[tex] \sf \underline{Solution} : – [/tex]
The coordinates of the mid point M of the joining AP(x₁, y₁) and Q (x₂, y₂) is
[tex] \sf M= \bigg( \dfrac{x_1 + x_2}{2},\dfrac{y_1 + y_2}{2} \bigg)[/tex]
Let M be the mid point of PQ
[tex] \sf M= \bigg( \dfrac{x_1 + x_2}{2},\dfrac{y_1 + y_2}{2} \bigg)[/tex]
[tex] \sf M= \bigg( \dfrac{2 – 2}{2},\dfrac{1 + 3}{2} \bigg)[/tex]
[tex] \sf M= \bigg( \dfrac{0}{2},\dfrac{4}{2} \bigg)[/tex]
[tex] \sf M= (0,2)[/tex]
The slope of medium PM,
[tex] \sf m = \dfrac{5 – 2}{4 – 0} = \dfrac{3}{4} [/tex]
The Equation of the medium PM is y – y₁ = m(x – x₁)
[tex] \sf y – y_1 = m(x – x_1)[/tex]
[tex] \sf y -2 = \dfrac{3}{4} (x – 0)[/tex]
[tex] \sf 4y – 8 = 3x[/tex]
[tex]\boxed{ \sf3x – 4y + 8 = 0}[/tex]