the vertices of triangle PQR are P(2,1), Q(-2,3) and R(4,5) Find the equation of the median through the vertex R​

the vertices of triangle PQR are P(2,1), Q(-2,3) and R(4,5) Find the equation of the median through the vertex R​

About the author
Sarah

1 thought on “the vertices of triangle PQR are P(2,1), Q(-2,3) and R(4,5) Find the equation of the median through the vertex R​”

  1. [tex] \sf \underline{Given} : -[/tex]

    P = (2,1)

    Q = (-2,3)

    R = (4,5)

    [tex] \sf \underline{To \: find} : – [/tex]

    The equation of the median through the vertex R

    [tex] \sf \underline{Solution} : – [/tex]

    The coordinates of the mid point M of the joining AP(x₁, y₁) and Q (x₂, y₂) is

    [tex] \sf M= \bigg( \dfrac{x_1 + x_2}{2},\dfrac{y_1 + y_2}{2} \bigg)[/tex]

    Let M be the mid point of PQ

    [tex] \sf M= \bigg( \dfrac{x_1 + x_2}{2},\dfrac{y_1 + y_2}{2} \bigg)[/tex]

    [tex] \sf M= \bigg( \dfrac{2 – 2}{2},\dfrac{1 + 3}{2} \bigg)[/tex]

    [tex] \sf M= \bigg( \dfrac{0}{2},\dfrac{4}{2} \bigg)[/tex]

    [tex] \sf M= (0,2)[/tex]

    The slope of medium PM,

    [tex] \sf m = \dfrac{5 – 2}{4 – 0} = \dfrac{3}{4} [/tex]

    The Equation of the medium PM is y – y₁ = m(x – x₁)

    [tex] \sf y – y_1 = m(x – x_1)[/tex]

    [tex] \sf y -2 = \dfrac{3}{4} (x – 0)[/tex]

    [tex] \sf 4y – 8 = 3x[/tex]

    [tex]\boxed{ \sf3x – 4y + 8 = 0}[/tex]

    Reply

Leave a Comment