The two sides of a triangle are in the ratio of 2:3 and it’s third side is 5cm . if the perimeter of the triangle is 15cm , what is it’s area About the author Luna
[tex]\large\underline{\sf{Solution-}}[/tex] Let us consider a triangle ABC such that AB, BC and CA is represented by a, b, c respectively. According to statement, Let assume that, a : b = 2 : 3 and c = 5 cm. Let a = 2x and b = 3x Further given that, Perimeter of Triangle = 15 cm ⟼ a + b + c = 15 ⟼ 2x + 3x + 5 = 15 ⟼ 5x + 5 = 15 ⟼ 5x = 15 – 5 ⟼ 5x = 10 ⇛ x = 2 Hence, The sides of triangle ABC are ⟼ a = 2x = 2 × 2 = 4 cm ⟼ b = 3x = 3 × 2 = 6 cm ⟼ c = 5 cm We know that, [tex]\underline{\boxed{\sf Semi \: Perimeter \ of \ a \ triangle \: (s)= \dfrac{1}{2} (a+b+c)}}[/tex] [tex]\rm :\longmapsto\:s = \dfrac{1}{2}(4 + 6 + 5)[/tex] [tex]\rm :\longmapsto\:s = \dfrac{1}{2}(15)[/tex] [tex]\bf\implies \:s = \dfrac{15}{2} \: cm[/tex] We know, [tex]\underline{\boxed{\bf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }}[/tex] [tex] \rm \:= \: \: \sqrt{\dfrac{15}{2}\bigg(\dfrac{15}{2} – 4\bigg)\bigg(\dfrac{15}{2} – 6 \bigg)\bigg(\dfrac{15}{2} – 5\bigg) } [/tex] [tex] \rm \:= \: \: \sqrt{\dfrac{15}{2}\bigg(\dfrac{15 – 8}{2}\bigg)\bigg(\dfrac{15 – 12}{2} \bigg)\bigg(\dfrac{15 – 10}{2}\bigg) } [/tex] [tex] \rm \:= \: \: \sqrt{\dfrac{15}{2}\bigg(\dfrac{7}{2}\bigg)\bigg(\dfrac{3}{2} \bigg)\bigg(\dfrac{5}{2}\bigg) } [/tex] [tex] \rm \:= \: \:\dfrac{15}{4} \sqrt{7} \: {cm}^{2} [/tex] Additional Information :- [tex]\green{\boxed{\bf{Area_{(rectangle)} = l \times b}}}[/tex] [tex]\green{\boxed{\bf{Area_{(square)} = 4 \times side}}}[/tex] [tex]\green{\boxed{\bf{Area_{(circle)} = \pi \: {r}^{2} }}}[/tex] [tex]\green{\boxed{\bf{Area_{(rhombus)} = h \times b}}}[/tex] [tex]\green{\boxed{\bf{Area_{(parallelogram)} = h \times b}}}[/tex] Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Let us consider a triangle ABC such that AB, BC and CA is represented by a, b, c respectively.
According to statement,
Let assume that,
Let a = 2x and b = 3x
Further given that, Perimeter of Triangle = 15 cm
⟼ a + b + c = 15
⟼ 2x + 3x + 5 = 15
⟼ 5x + 5 = 15
⟼ 5x = 15 – 5
⟼ 5x = 10
⇛ x = 2
Hence,
The sides of triangle ABC are
We know that,
[tex]\underline{\boxed{\sf Semi \: Perimeter \ of \ a \ triangle \: (s)= \dfrac{1}{2} (a+b+c)}}[/tex]
[tex]\rm :\longmapsto\:s = \dfrac{1}{2}(4 + 6 + 5)[/tex]
[tex]\rm :\longmapsto\:s = \dfrac{1}{2}(15)[/tex]
[tex]\bf\implies \:s = \dfrac{15}{2} \: cm[/tex]
We know,
[tex]\underline{\boxed{\bf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }}[/tex]
[tex] \rm \:= \: \: \sqrt{\dfrac{15}{2}\bigg(\dfrac{15}{2} – 4\bigg)\bigg(\dfrac{15}{2} – 6 \bigg)\bigg(\dfrac{15}{2} – 5\bigg) } [/tex]
[tex] \rm \:= \: \: \sqrt{\dfrac{15}{2}\bigg(\dfrac{15 – 8}{2}\bigg)\bigg(\dfrac{15 – 12}{2} \bigg)\bigg(\dfrac{15 – 10}{2}\bigg) } [/tex]
[tex] \rm \:= \: \: \sqrt{\dfrac{15}{2}\bigg(\dfrac{7}{2}\bigg)\bigg(\dfrac{3}{2} \bigg)\bigg(\dfrac{5}{2}\bigg) } [/tex]
[tex] \rm \:= \: \:\dfrac{15}{4} \sqrt{7} \: {cm}^{2} [/tex]
Additional Information :-
[tex]\green{\boxed{\bf{Area_{(rectangle)} = l \times b}}}[/tex]
[tex]\green{\boxed{\bf{Area_{(square)} = 4 \times side}}}[/tex]
[tex]\green{\boxed{\bf{Area_{(circle)} = \pi \: {r}^{2} }}}[/tex]
[tex]\green{\boxed{\bf{Area_{(rhombus)} = h \times b}}}[/tex]
[tex]\green{\boxed{\bf{Area_{(parallelogram)} = h \times b}}}[/tex]