[tex]\rm :\implies\:x = 6 \: km \: per \: hour[/tex]
[tex]\bf\implies \:Speed \: of \: stream \: is \: 6 \: km \: per \: hour[/tex]
Basic Concept Used :-
1. Stream –
The moving water in a river is called a stream.
2. Upstream –
If the boat is flowing in the opposite direction to the stream, it is called upstream. In this case, the net speed of the boat is called the upstream speed.
Speed of upstream = Speed of boat – Speed of stream
3. Downstream –
If the boat is flowing along the direction of the stream, it is called downstream. In this case, the net speed of the boat is called the downstream speed.
Speed of downstream = Speed of Boat- Speed of stream
[tex]\large\underline{\bold{Given- }}[/tex]
[tex]\large\underline{\sf{To\:Find – }}[/tex]
[tex]\begin{gathered}\Large{\sf{{\underline{Formula \: Used – }}}} \end{gathered}[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \boxed{ \bf{ \: Time \: = \: \dfrac{Distance}{Speed} }}[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Since,
Therefore,
and
Now,
Case :- 1
So,
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf \: t_1 \: = \: \dfrac{48}{18 – x} \: hours[/tex]
Case :- 2
So,
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf \: t_2 \: = \: \dfrac{48}{18 + x} [/tex]
According to statement,
[tex]\rm :\implies\:t_1 + t_2 = 6[/tex]
[tex]\rm :\longmapsto\:\dfrac{48}{18 – x} + \dfrac{48}{18 + x} = 6[/tex]
[tex]\rm :\longmapsto\:48\bigg(\dfrac{1}{18 – x} + \dfrac{1}{18 + x} \bigg) = 6[/tex]
[tex]\rm :\longmapsto\:48\bigg(\dfrac{18 + x + 18 – x}{(18 + x)(18 – x)} \bigg) = 6[/tex]
[tex]\rm :\longmapsto\:\dfrac{48 \times 36}{ {18}^{2} – {x}^{2} } = 6[/tex]
[tex]\rm :\implies\:288 = 324 – {x}^{2} [/tex]
[tex]\rm :\longmapsto\: {x}^{2} = 36[/tex]
[tex]\rm :\implies\:x = 6 \: km \: per \: hour[/tex]
[tex]\bf\implies \:Speed \: of \: stream \: is \: 6 \: km \: per \: hour[/tex]
Basic Concept Used :-
1. Stream –
2. Upstream –
3. Downstream –