The point Q divides segment joining A (3, 5) and B (7, 9) in the ratio 2 : 3. Find the X-coordinate of Q. About the author Cora
[tex]\textbf{Given:}[/tex] [tex]\textsf{The point Q divides line segment joining A(3,5) and}[/tex] [tex]\textsf{B(7,9) in the ratio 2:3}[/tex] [tex]\textbf{To find:}[/tex] [tex]\textsf{The co-ordinates of Q}[/tex] [tex]\textbf{Solution:}[/tex] [tex]\textsf{By Section formula, the co-ordinates of Q are}[/tex] [tex]\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}[/tex] [tex]\mathsf{\left(\dfrac{2(7)+3(3)}{2+3},\dfrac{2(9)+3(5)}{2+3}\right)}[/tex] [tex]\mathsf{\left(\dfrac{14+9}{5},\dfrac{18+15}{5}\right)}[/tex] [tex]\mathsf{\left(\dfrac{23}{5},\dfrac{33}{5}\right)}[/tex] [tex]\therefore\mathsf{x\;co-ordinate\;of\;Q\;is\;\dfrac{23}{5}}[/tex] [tex]\textbf{Find more:}[/tex] Find the ratio in which the line segment joining the points (-3,10), and(6,-8) is divided by(-1,6) https://brainly.in/question/17730071 Reply
[tex]\textbf{Given:}[/tex]
[tex]\textsf{The point Q divides line segment joining A(3,5) and}[/tex]
[tex]\textsf{B(7,9) in the ratio 2:3}[/tex]
[tex]\textbf{To find:}[/tex]
[tex]\textsf{The co-ordinates of Q}[/tex]
[tex]\textbf{Solution:}[/tex]
[tex]\textsf{By Section formula, the co-ordinates of Q are}[/tex]
[tex]\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{2(7)+3(3)}{2+3},\dfrac{2(9)+3(5)}{2+3}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{14+9}{5},\dfrac{18+15}{5}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{23}{5},\dfrac{33}{5}\right)}[/tex]
[tex]\therefore\mathsf{x\;co-ordinate\;of\;Q\;is\;\dfrac{23}{5}}[/tex]
[tex]\textbf{Find more:}[/tex]
Find the ratio in which the line segment joining the points (-3,10), and(6,-8) is divided by(-1,6)
https://brainly.in/question/17730071