The pillars of a temple are cylindrically shaped. If each pillar has a circular baseof radius 1m and height 10m, find its volume. About the author Serenity
Given : Base Radius of Pillar of temple is 1 m & Height of the Pillar is 10 m . Exigency To Find : Volume of Pillar . ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ❍ Formula for Volume of Cylinder is given by : [tex]\dag\:\:\boxed{\sf{ Volume _{(Cylinder)} =\bigg( \pi r^2 h \bigg) }}\\\\[/tex] Where, r is the Radius of Pillar , h is the Height of pillar & [tex]\pi = \dfrac{22}{7}\:or\:3.14[/tex] ⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex] [tex]\qquad :\implies \sf { Volume = \dfrac{22}{7} \times (1)^2 \times 10 }\\\\\\ :\implies \sf { Volume = \dfrac{22}{7} \times 1 \times 10 }\\\\\\ :\implies \sf { Volume = 3.14 \times 1 \times 10 }\\\\\\ :\implies \sf { Volume = 3.14 \times 10 }\\\\\\ \underline {\boxed{\pink{ \frak { Volume = 31.4\: m^2}}}}\:\bf{\bigstar}\\[/tex] Therefore, ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\:The\:Volume \: \:of\:Pillar \:is\:\bf{31.4\: m^2}}}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ [tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex] [tex]\boxed{\begin{array}{cc}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{array}}[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
Answer:- The Volume of each pillar is 31.4 m³. Explanation:– Given:– Radius of the pillar = 1m. Height of the pillar = 10m. To Find:– The Volume Of The Pillar. Formula Used:- [tex]\large\bf\mapsto V = \pi r^2 h.[/tex] Where, V = Volume. r = radius of the pillar = 1m. [tex]\tt\pi = 3.14.[/tex] h = height = 10m. Solution:– By Putting The Values In The Formula:- [tex]\\ \tt\mapsto V = \pi r^2 h.[/tex] [tex]\\ \tt\mapsto V =3.14 \times (1m) {}^{2} \times 10m.[/tex] [tex]\\ \tt\mapsto V =3.14 \times 1m {}^{2} \times 10m. [/tex] [tex]\\ \large\bf\mapsto \boxed{ \bf V =31.4 {m}^{3}} [/tex] Therefore The Required Volume of The Pillar Is 31.4 m³. Reply
Given : Base Radius of Pillar of temple is 1 m & Height of the Pillar is 10 m .
Exigency To Find : Volume of Pillar .
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
❍ Formula for Volume of Cylinder is given by :
[tex]\dag\:\:\boxed{\sf{ Volume _{(Cylinder)} =\bigg( \pi r^2 h \bigg) }}\\\\[/tex]
Where,
⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex]
[tex]\qquad :\implies \sf { Volume = \dfrac{22}{7} \times (1)^2 \times 10 }\\\\\\ :\implies \sf { Volume = \dfrac{22}{7} \times 1 \times 10 }\\\\\\ :\implies \sf { Volume = 3.14 \times 1 \times 10 }\\\\\\ :\implies \sf { Volume = 3.14 \times 10 }\\\\\\ \underline {\boxed{\pink{ \frak { Volume = 31.4\: m^2}}}}\:\bf{\bigstar}\\[/tex]
Therefore,
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\:The\:Volume \: \:of\:Pillar \:is\:\bf{31.4\: m^2}}}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
[tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]
[tex]\boxed{\begin{array}{cc}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{array}}[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
Answer:-
The Volume of each pillar is 31.4 m³.
Explanation:–
Given:–
To Find:–
Formula Used:-
[tex]\large\bf\mapsto V = \pi r^2 h.[/tex]
Where,
Solution:–
By Putting The Values In The Formula:-
[tex]\\ \tt\mapsto V = \pi r^2 h.[/tex]
[tex]\\ \tt\mapsto V =3.14 \times (1m) {}^{2} \times 10m.[/tex]
[tex]\\ \tt\mapsto V =3.14 \times 1m {}^{2} \times 10m. [/tex]
[tex]\\ \large\bf\mapsto \boxed{ \bf V =31.4 {m}^{3}} [/tex]
Therefore The Required Volume of The Pillar Is 31.4 m³.