The pillars of a temple are cylindrically shaped. If each pillar has a circular base
of radius 1m and height 10m, find its vo

The pillars of a temple are cylindrically shaped. If each pillar has a circular base
of radius 1m and height 10m, find its volume.​

About the author
Serenity

2 thoughts on “The pillars of a temple are cylindrically shaped. If each pillar has a circular base<br />of radius 1m and height 10m, find its vo”

  1. Given : Base Radius of Pillar of temple is 1 m & Height of the Pillar is 10 m .

    Exigency To Find : Volume of Pillar .

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    ❍ Formula for Volume of Cylinder is given by :

    [tex]\dag\:\:\boxed{\sf{ Volume _{(Cylinder)} =\bigg( \pi r^2 h \bigg) }}\\\\[/tex]

    Where,

    • r is the Radius of Pillar , h is the Height of pillar & [tex]\pi = \dfrac{22}{7}\:or\:3.14[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex]

    [tex]\qquad :\implies \sf { Volume = \dfrac{22}{7} \times (1)^2 \times 10 }\\\\\\ :\implies \sf { Volume = \dfrac{22}{7} \times 1 \times 10 }\\\\\\ :\implies \sf { Volume = 3.14 \times 1 \times 10 }\\\\\\ :\implies \sf { Volume = 3.14 \times 10 }\\\\\\ \underline {\boxed{\pink{ \frak { Volume = 31.4\: m^2}}}}\:\bf{\bigstar}\\[/tex]

    Therefore,

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\:The\:Volume \: \:of\:Pillar \:is\:\bf{31.4\: m^2}}}}\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    [tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]

    [tex]\boxed{\begin{array}{cc}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{array}}[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    Reply
  2. Answer:-

    The Volume of each pillar is 31.4 m³.

    Explanation:

    Given:

    • Radius of the pillar = 1m.
    • Height of the pillar = 10m.

    To Find:

    • The Volume Of The Pillar.

    Formula Used:-

    [tex]\large\bf\mapsto V = \pi r^2 h.[/tex]

    Where,

    • V = Volume.
    • r = radius of the pillar = 1m.
    • [tex]\tt\pi = 3.14.[/tex]
    • h = height = 10m.

    Solution:

    By Putting The Values In The Formula:-

    [tex]\\ \tt\mapsto V = \pi r^2 h.[/tex]

    [tex]\\ \tt\mapsto V =3.14 \times (1m) {}^{2} \times 10m.[/tex]

    [tex]\\ \tt\mapsto V =3.14 \times 1m {}^{2} \times 10m. [/tex]

    [tex]\\ \large\bf\mapsto \boxed{ \bf V =31.4 {m}^{3}} [/tex]

    Therefore The Required Volume of The Pillar Is 31.4 m³.

    Reply

Leave a Reply to Ivy Cancel reply