The pillars of a temple are cylindrical shaped. if each pillar has a circular base of radius 30 cm and height 10 m, how much concrete mixture would be required to build 14 such pillars? About the author Eden
Given:– Pillars of a temple are cylindrical shaped Radius of base of each pillar = 30 Height of each pillar = 10 m To Find:– How much concrete mixture would be required to build 14 such pillars. Solution:- We know, To build a pillar we require the amount of concrete required. Hence we need to find volume of the pillar here. We already have:- [tex]\bf{\green{Radius\:of\:base = 30\:cm}}[/tex] [tex]\bf{\red{Height = 10\:m = 1000\:cm}[\because\:1\:m = 100\:cm]}[/tex] We know, [tex]\dag\boxed{\underline{\pink{\bf{Volume\:of\:Cylinder = \pi r^2h\:sq.units}}}}[/tex] Putting all the values, we get:- [tex]\sf{Volume\:of\:each\:pillar = \dfrac{22}{7}\times (30)^2\times 1000}[/tex] [tex]\sf{Volume\:of\:1\:pillar = \dfrac{22000\times 900}{7}}[/tex] [tex]=\sf{Volume\:of\:1\:pillar = \dfrac{19800000}{7}}[/tex] [tex]\dag{\boxed{\underline{\bf{\therefore\:The\:Volume\:of\:one\:pillar\:is\:\dfrac{19800000}{7}cm^3}}}}[/tex] Now, [tex]\sf{\because\:Volume\:of\:1\:pillar = \dfrac{19800000}{7}\:cm^3}[/tex] [tex]\sf{\therefore\:Volume\:of\:14\:pillars = 14\times \dfrac{19800000}{7}}[/tex] [tex] = \sf{Volume\:of\:14\:pillars = 2\times19800000 = 39600000\:cm^3}[/tex] [tex]\boxed{\underline{\blue{\bf{\therefore\:The\:required\:Concrete\:mixture\:is\:14\:\:pillars\:is\:3960000\:cm^3\:or\:39.6\:m^3}}}}[/tex] ______________________________________ Reply
Answer: [tex] \large \underline{\sf\pmb{Given}}[/tex] ➠ Radius of the base of a cylinder = 30 cm ➠ Height of Cylinder = 10 m [tex] \large \underline{{ \sf \pmb{To Find}}}[/tex] ➠ How much concrete mixture would be required to build 14 such pillars? [tex] \large\underline{\sf \pmb{Using \: Formula }}[/tex] [tex] \circ\underline{ \boxed{ \sf{Volume \: of \: Cylinder \: Piller = {\pi} {r}^{2}h }}}[/tex] [tex] \large \underline{ \sf \pmb{Solution}}[/tex] [tex] \bigstar \: \underline\frak{Firstly \: Converting \: Height \: (30cm) \: into \: m}[/tex] As we know that [tex] : \implies \sf{1 \: cm = \dfrac{1}{100} \: m}[/tex] So, [tex] : \implies \sf{30 \: c m = \bigg( \dfrac{30}{100} \bigg)m}[/tex] [tex] : \implies \bf \red{0.3 \: cm}[/tex] [tex] \bigstar \: \underline\frak{Now,Finding \: the \: volume \: of \: a \: pillar}[/tex] [tex]{ : \implies \sf{Volume \: of \: Cylinder \: Pillar = {\pi} {r}^{2}h }}[/tex] Substituting the values [tex]{ : \implies\sf{Volume_{(cylinder \: pillar)}} = \dfrac{22}{7} \times {0.3}^{2} \times 10}[/tex] [tex]{ : \implies\sf{Volume_{(cylinder \: pillar)}} = \dfrac{22}{7} \times (0.3 \times 0.3) \times 10}[/tex] [tex]{ : \implies\sf{Volume_{(cylinder \: pillar)}} = \dfrac{22}{7} \times 0.09\times 10}[/tex] [tex]{ : \implies\sf{Volume_{(cylinder \: pillar)}} = \dfrac{22}{7} \times 0.9}[/tex] [tex]{ : \implies\bf {\red{Volume_{(cylinder \: pillar)} = \dfrac{19.8}{7} }}}[/tex] [tex] \circ \underline{ \boxed {\sf \purple{Volume \: of \: a \: Cylinder \: Piller \: is \: 19.8/7 m³}}}[/tex] [tex] \bigstar \: \underline\frak{Now,Finding \: the \: volume \: of \: 14\: pillers.}[/tex] [tex] {: \implies\sf{Volume \: of \: 14 \: Piller = 14 \times Volume \: of \: a \: pillar}}[/tex] Substituting the values [tex]{: \implies\sf{Volume= 14 \times \dfrac{19.8}{7} }}[/tex] [tex]{: \implies\sf{Volume= \cancel{14} \times \dfrac{19.8}{ \cancel{7} }}}[/tex] [tex]{: \implies\sf{Volume= 2 \times 19.8} \: {m}^{3} } [/tex] [tex]{: \implies\bf \red{Volume=39.6 \: {cm}^{3} } }[/tex] [tex] \circ\underline{\boxed {\sf \purple{Volume \: of \: 14 \: pillar \: is \: 39.6 \: {m}^{3}}}}[/tex] ➠ Henceforth,14 pillars would need 39.6 m³ of concrete mixture. Reply
Given:–
To Find:–
Solution:-
We know,
To build a pillar we require the amount of concrete required. Hence we need to find volume of the pillar here.
We already have:-
We know,
Putting all the values, we get:-
[tex]\sf{Volume\:of\:each\:pillar = \dfrac{22}{7}\times (30)^2\times 1000}[/tex]
[tex]\sf{Volume\:of\:1\:pillar = \dfrac{22000\times 900}{7}}[/tex]
[tex]=\sf{Volume\:of\:1\:pillar = \dfrac{19800000}{7}}[/tex]
[tex]\dag{\boxed{\underline{\bf{\therefore\:The\:Volume\:of\:one\:pillar\:is\:\dfrac{19800000}{7}cm^3}}}}[/tex]
Now,
[tex]\sf{\because\:Volume\:of\:1\:pillar = \dfrac{19800000}{7}\:cm^3}[/tex]
[tex]\sf{\therefore\:Volume\:of\:14\:pillars = 14\times \dfrac{19800000}{7}}[/tex]
[tex] = \sf{Volume\:of\:14\:pillars = 2\times19800000 = 39600000\:cm^3}[/tex]
[tex]\boxed{\underline{\blue{\bf{\therefore\:The\:required\:Concrete\:mixture\:is\:14\:\:pillars\:is\:3960000\:cm^3\:or\:39.6\:m^3}}}}[/tex]
______________________________________
Answer:
[tex] \large \underline{\sf\pmb{Given}}[/tex]
[tex] \large \underline{{ \sf \pmb{To Find}}}[/tex]
[tex] \large\underline{\sf \pmb{Using \: Formula }}[/tex]
[tex] \circ\underline{ \boxed{ \sf{Volume \: of \: Cylinder \: Piller = {\pi} {r}^{2}h }}}[/tex]
[tex] \large \underline{ \sf \pmb{Solution}}[/tex]
[tex] \bigstar \: \underline\frak{Firstly \: Converting \: Height \: (30cm) \: into \: m}[/tex]
As we know that
[tex] : \implies \sf{1 \: cm = \dfrac{1}{100} \: m}[/tex]
So,
[tex] : \implies \sf{30 \: c m = \bigg( \dfrac{30}{100} \bigg)m}[/tex]
[tex] : \implies \bf \red{0.3 \: cm}[/tex]
[tex] \bigstar \: \underline\frak{Now,Finding \: the \: volume \: of \: a \: pillar}[/tex]
[tex]{ : \implies \sf{Volume \: of \: Cylinder \: Pillar = {\pi} {r}^{2}h }}[/tex]
[tex]{ : \implies\sf{Volume_{(cylinder \: pillar)}} = \dfrac{22}{7} \times {0.3}^{2} \times 10}[/tex]
[tex]{ : \implies\sf{Volume_{(cylinder \: pillar)}} = \dfrac{22}{7} \times (0.3 \times 0.3) \times 10}[/tex]
[tex]{ : \implies\sf{Volume_{(cylinder \: pillar)}} = \dfrac{22}{7} \times 0.09\times 10}[/tex]
[tex]{ : \implies\sf{Volume_{(cylinder \: pillar)}} = \dfrac{22}{7} \times 0.9}[/tex]
[tex]{ : \implies\bf {\red{Volume_{(cylinder \: pillar)} = \dfrac{19.8}{7} }}}[/tex]
[tex] \circ \underline{ \boxed {\sf \purple{Volume \: of \: a \: Cylinder \: Piller \: is \: 19.8/7 m³}}}[/tex]
[tex] \bigstar \: \underline\frak{Now,Finding \: the \: volume \: of \: 14\: pillers.}[/tex]
[tex] {: \implies\sf{Volume \: of \: 14 \: Piller = 14 \times Volume \: of \: a \: pillar}}[/tex]
[tex]{: \implies\sf{Volume= 14 \times \dfrac{19.8}{7} }}[/tex]
[tex]{: \implies\sf{Volume= \cancel{14} \times \dfrac{19.8}{ \cancel{7} }}}[/tex]
[tex]{: \implies\sf{Volume= 2 \times 19.8} \: {m}^{3} } [/tex]
[tex]{: \implies\bf \red{Volume=39.6 \: {cm}^{3} } }[/tex]
[tex] \circ\underline{\boxed {\sf \purple{Volume \: of \: 14 \: pillar \: is \: 39.6 \: {m}^{3}}}}[/tex]