The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers About the author Sophia
Step-by-step explanation: __________________________________________________________________________________________________________________ [tex]\large\pink{ {\boxed { Question :-}}}[/tex] ⊙ The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers. _________________________________________________________ [tex] \Huge\boxed {{ \orange{Answer :-}}}[/tex] _________________________________________________________ [tex] \implies {a+b+c+d+e+f+g+h}=328[/tex] [tex] \implies\frac{a + b + c + d + e + f + g + h }{8} =41[/tex] [tex] \implies \frac{g + h}{2}=29[/tex] [tex]g + h=58[/tex] [tex]So \implies a+b+c+d+e+f+g+h=328 Becomes…[/tex] [tex] \implies \: a+b+c+d+e+f+58=328[/tex] [tex] \implies \: a+b+c+d+e+f=270[/tex] [tex] \implies \: Mean \: of \: these \: six \: numbers…[/tex] [tex] \implies \frac{a + b + c + d + e + f + g}{6}= \frac{270}{6}= \pink{\boxed {45}}[/tex] [tex] \green{ \boxed{ \implies{45}}}[/tex] _________________________________________________________ Explanation: The mean is that single value that if you multiply it by the count of values used to derive it you end up with their sum. 8 values with mean of 41 8 x 41 = 328 <-sum of all values. 2 values with mean of 29 2 x 29 = 58 ~~~~~~~~~~~~~~~~~~~~~~~~ So the remaining 6 values must sum to 328 – 58 = 270 Thus the mean of the remaining 6 is 270÷6=45 _________________________________________________________ Reply
Step-by-step explanation:
__________________________________________________________________________________________________________________
[tex]\large\pink{ {\boxed { Question :-}}}[/tex]
⊙ The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers.
_________________________________________________________
[tex] \Huge\boxed {{ \orange{Answer :-}}}[/tex]
_________________________________________________________
[tex] \implies {a+b+c+d+e+f+g+h}=328[/tex]
[tex] \implies\frac{a + b + c + d + e + f + g + h }{8} =41[/tex]
[tex] \implies \frac{g + h}{2}=29[/tex]
[tex]g + h=58[/tex]
[tex]So \implies a+b+c+d+e+f+g+h=328 Becomes…[/tex]
[tex] \implies \: a+b+c+d+e+f+58=328[/tex]
[tex] \implies \: a+b+c+d+e+f=270[/tex]
[tex] \implies \: Mean \: of \: these \: six \: numbers…[/tex]
[tex] \implies \frac{a + b + c + d + e + f + g}{6}= \frac{270}{6}= \pink{\boxed {45}}[/tex]
[tex] \green{ \boxed{ \implies{45}}}[/tex]
_________________________________________________________
Explanation:
The mean is that single value that if you multiply it by the count of values used to derive it you end up with their sum.
8 values with mean of 41
8 x 41 = 328 <-sum of all values.
2 values with mean of 29
2 x 29 = 58
~~~~~~~~~~~~~~~~~~~~~~~~
So the remaining 6 values must sum to 328 – 58 = 270
Thus the mean of the remaining 6 is 270÷6=45
_________________________________________________________