The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers

The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers

About the author
Sophia

1 thought on “The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers”

  1. Step-by-step explanation:

    __________________________________________________________________________________________________________________

    [tex]\large\pink{ {\boxed { Question :-}}}[/tex]

    ⊙ The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers.

    _________________________________________________________

    [tex] \Huge\boxed {{ \orange{Answer :-}}}[/tex]

    _________________________________________________________

    [tex] \implies {a+b+c+d+e+f+g+h}=328[/tex]

    [tex] \implies\frac{a + b + c + d + e + f + g + h }{8} =41[/tex]

    [tex] \implies \frac{g + h}{2}=29[/tex]

    [tex]g + h=58[/tex]

    [tex]So \implies a+b+c+d+e+f+g+h=328 Becomes…[/tex]

    [tex] \implies \: a+b+c+d+e+f+58=328[/tex]

    [tex] \implies \: a+b+c+d+e+f=270[/tex]

    [tex] \implies \: Mean \: of \: these \: six \: numbers…[/tex]

    [tex] \implies \frac{a + b + c + d + e + f + g}{6}= \frac{270}{6}= \pink{\boxed {45}}[/tex]

    [tex] \green{ \boxed{ \implies{45}}}[/tex]

    _________________________________________________________

    Explanation:

    The mean is that single value that if you multiply it by the count of values used to derive it you end up with their sum.

    8 values with mean of 41

    8 x 41 = 328 <-sum of all values.

    2 values with mean of 29

    2 x 29 = 58

    ~~~~~~~~~~~~~~~~~~~~~~~~

    So the remaining 6 values must sum to 328 – 58 = 270

    Thus the mean of the remaining 6 is 270÷6=45

    _________________________________________________________

    Reply

Leave a Comment