the length of the diagonats of a rhombus are 30cm and 40cm.Find the side of the rhombus. About the author Adeline
Given: A rhombus with – Diagonal 1 = 30 cm Diagonal 2 = 40 cm What To Find: We have to – Find the side of the rhombus. Formula Needed: The formula is – [tex]\bf s = \dfrac{\sqrt{(D1)^2 + (D2)^2}}{2}[/tex] Abbreviations Used: s = Side D1 = Diagonal 1 D2 = Diagonal 2 Solution: [tex]\sf \implies s = \dfrac{\sqrt{(D1)^2 + (D2)^2}}{2}[/tex] Substitute the values, [tex]\sf \implies s = \dfrac{\sqrt{(30)^2 + (40)^2}}{2}[/tex] Find the squares of 30 and 40, [tex]\sf \implies s = \dfrac{\sqrt{900 + 1600}}{2}[/tex] Add 900 and 1600, [tex]\sf \implies s = \dfrac{\sqrt{2500}}{2}[/tex] Find the square root of 2500, [tex]\sf \implies s = \dfrac{50}{2}[/tex] Divide 50 by 2, [tex]\sf \implies s = 25[/tex] Final Answer: ∴ Thus, the side of the rhombus is 25 cm. Reply
Given:
A rhombus with –
What To Find:
We have to –
Formula Needed:
The formula is –
[tex]\bf s = \dfrac{\sqrt{(D1)^2 + (D2)^2}}{2}[/tex]
Abbreviations Used:
Solution:
[tex]\sf \implies s = \dfrac{\sqrt{(D1)^2 + (D2)^2}}{2}[/tex]
Substitute the values,
[tex]\sf \implies s = \dfrac{\sqrt{(30)^2 + (40)^2}}{2}[/tex]
Find the squares of 30 and 40,
[tex]\sf \implies s = \dfrac{\sqrt{900 + 1600}}{2}[/tex]
Add 900 and 1600,
[tex]\sf \implies s = \dfrac{\sqrt{2500}}{2}[/tex]
Find the square root of 2500,
[tex]\sf \implies s = \dfrac{50}{2}[/tex]
Divide 50 by 2,
[tex]\sf \implies s = 25[/tex]
Final Answer:
∴ Thus, the side of the rhombus is 25 cm.
Answer:
35m
Step-by-step explanation:
2(l+b)
2×70=140
140/4=35m