THE LENGTH OF A RECTANGULAR FLOOR IS 20M,MORE THAN ITS BREADTH. IF THE PERIMETER OF THE FLOOR IS 280M,WHAT IS ITS LENGTH?

### 2 thoughts on “THE LENGTH OF A RECTANGULAR FLOOR IS 20M,MORE THAN ITS BREADTH. IF THE PERIMETER OF THE FLOOR IS 280M,WHAT IS ITS LENGTH?”

### Leave a Comment

You must be logged in to post a comment.

Answer:let x be the breadth

then length is x+20

so, 2(l+b)= perimeter of floor

now, 2(x+20+x)=280

2x+20=140

2x=120

x=60

therefore length is x+20= 60+20=80

❍ Let’s say, that the breadth of the floor be

and the length of the floor is 20m more than it’s breadth, therefore, the length bexrespectively.(x + 20)⠀⠀⠀⠀⠀

━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

[tex]\underline{\bf{\dag}\frak{\;As\;we\;know\;that:}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

[tex]\star\;\boxed{\pink{\sf{Perimeter\;_{(rectangle)}=2(Length+Breadth)}}}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore,⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

[tex]:\implies\sf{2[(x+20)+x]=280}\\\\\\\\:\implies\sf{2(2x+20)=280}\\\\\\\\:\implies\sf{4x+40=280}\\\\\\\\:\implies\sf{4x=280-40}\\\\\\\\:\implies\sf{4x=240}\\\\\\\\:\implies\sf{x=\cancel{\dfrac{240}{4}}}\\\\\\\\:\implies\underline{\boxed{\frak{\purple{x=60\;m}}}}{\;\bigstar}[/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence,⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

(x + 20)=(60 + 20)=80mx=60m⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

[tex]\therefore\;{\underline{\sf{Hence,\;its\;length\;is\;{\textsf{\textbf{80\;m}}}}.}}[/tex]

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━