The exterior angle of a regular polygon is 2x, and the interior angle is 4x.Find the measure of one interior and exterior angle.

The exterior angle of a regular polygon is 2x, and the interior angle is 4x.Find the measure of one interior and exterior angle.

1 thought on “The exterior angle of a regular polygon is 2x, and the interior angle is 4x.Find the measure of one interior and exterior angle.”

  1. Answer:

    Answer:

    \huge\star \underline{ \boxed{ \purple{Answer}}}\star⋆Answer⋆

    \frac{1}{x\:+\:4}\:+\:\frac{1}{2}\:=\:\frac{1}{x\:+\:4}x+41+21=x+41

    \frac{2\:+\:(x\:+\:4)}{2(x\:+\:4}\:=\:\frac{1}{x\:+\:4}2(x+42+(x+4)=x+41

    \frac{6\:+\:x}{2x\:+\:8}\:=\:\frac{1}{x\:+\:4}2x+86+x=x+41

    \red{On\:cross\:multiplying\:=}Oncrossmultiplying=

    (6\:+\:x)(x\:+\:4)\:=\:2x\:+\:8(6+x)(x+4)=2x+8

    \blue{Opening\:brakets\:=}Openingbrakets=

    6x\:+24\:+\:x^{2}\:+\:4x\:=\:2x\:+\:86x+24+x2+4x=2x+8

    x^{2}\:+\:10x\:+\:24\:=\:2x\:+\:8×2+10x+24=2x+8

    x^{2}\:+\:10x\:-\:2x+\:24\:-\:8\:=\:0x2+10x−2x+24−8=0

    x^{2}\:+\:8x\:+\:16\:=\:0x2+8x+16=0

    x^{2}\:+\:4x\:+\:4x\:+\:16\:=\:0x2+4x+4x+16=0

    x(x\:+\:4)\:+\:4(x\:+\:4)\:=\:0x(x+4)+4(x+4)=0

    (x\:+\:4)\:+\:(x\:+\:4)\:=\:0(x+4)+(x+4)=0

    \green{Therefore\:,}Therefore,

    x\:=\:-4\:,\:-4x=−4,−4

    -4\:=\:\green{non\:extraneous\:variable}−4=nonextraneousvariable

    Step-by-step explanation:

    \huge\mathcal\pink{Hope \: it \: helps \: you}Hopeithelpsyou

    \huge\mathcal\pink{friend}friend

Leave a Comment