The area of the triangle is 150cm².and its sides are in the ratio 3:4:5. what is it’s perimeter? ✘ɴᴏ sᴘᴀᴍ✘ɴᴏ ᴄᴏᴘɪᴇᴅ ᴀɴsᴡᴇʀ About the author Cora
Step-by-step explanation: GIVEN AREA of the triangle is 150cm² Ratio of sides → 3:4:5. TO FIND Perimeter SOLUTION Let the sides be X a = 3x b = 4x c = 5x Using Heron’s Formula, s = (3+4+5)x/2 = 12x/2 = 6x \begin{gathered} \begin{gathered} \sqrt{s(s – a)(s – b)(s – c)} \\ \sqrt{6x(6x – 3x)(6x – 4x)(6x – 5x)} \\ \sqrt{6x \times 3x \times 2x \times x} \\ \sqrt{36 {x}^{4} } \\ 6 {x}^{2} \\ Area = 150 \: {cm}^{2} \\ So, \\ 6 {x}^{2} = 150 \\ {x}^{2} = \frac{150}{6} \\ {x}^{2} = 25 \\ x = \sqrt{25} = 5 \: cm\end{gathered} \end{gathered} s(s−a)(s−b)(s−c) 6x(6x−3x)(6x−4x)(6x−5x) 6x×3x×2x×x 36x 4 6x 2 Area=150cm 2 So, 6x 2 =150 x 2 = 6 150 x 2 =25 x= 25 =5cm Therefore, a = 5×3 = 15 cm b = 5×4 = 20 cm c = 5×5 = 25 cm NOW, Perimeter = 15+20+25 = 60 cm Reply
Step-by-step explanation:
GIVEN
AREA of the triangle is 150cm²
Ratio of sides → 3:4:5.
TO FIND
Perimeter
SOLUTION
Let the sides be X
a = 3x
b = 4x
c = 5x
Using Heron’s Formula,
s = (3+4+5)x/2 = 12x/2 = 6x
\begin{gathered} \begin{gathered} \sqrt{s(s – a)(s – b)(s – c)} \\ \sqrt{6x(6x – 3x)(6x – 4x)(6x – 5x)} \\ \sqrt{6x \times 3x \times 2x \times x} \\ \sqrt{36 {x}^{4} } \\ 6 {x}^{2} \\ Area = 150 \: {cm}^{2} \\ So, \\ 6 {x}^{2} = 150 \\ {x}^{2} = \frac{150}{6} \\ {x}^{2} = 25 \\ x = \sqrt{25} = 5 \: cm\end{gathered} \end{gathered}
s(s−a)(s−b)(s−c)
6x(6x−3x)(6x−4x)(6x−5x)
6x×3x×2x×x
36x
4
6x
2
Area=150cm
2
So,
6x
2
=150
x
2
=
6
150
x
2
=25
x=
25
=5cm
Therefore,
a = 5×3 = 15 cm
b = 5×4 = 20 cm
c = 5×5 = 25 cm
NOW,
Perimeter
= 15+20+25
= 60 cm
The perimeter is 60 cm
hope it helps you ✌