The area of a circle is 13.86 hectares . Find the cost of fencing it at the rate of 60 paisa per meter About the author Ivy
[tex]\large\underline{\sf{Given- }}[/tex] The area of a circle is 13.86 hectares . The cost of fencing is 60 paisa per meter. [tex]\large\underline{\sf{To\:Find – }}[/tex] Cost of fencing the circle at Rs 0.6 per meter. [tex]\begin{gathered}\Large{\sf{{\underline{Formula \: Used – }}}} \end{gathered}[/tex] [tex] 1. \: \: \: \boxed{ \sf \: Area_{(circle)} = \pi \: {r}^{2} }[/tex] [tex] 2. \: \: \: \boxed{ \sf \: Perimeter_{(circle)} = 2\pi \: r}[/tex] [tex] 3. \: \: \: \boxed{ \sf \: 1 \: hectare = 10000 \: {m}^{2} }[/tex] [tex]\large\underline{\sf{Solution-}}[/tex] Let assume that radius of circle be ‘r’ meter. Given that [tex]\rm :\longmapsto\:Area_{(circle)} = 13.86 \: hectare \: [/tex] [tex]\rm :\longmapsto\:\pi \: {r}^{2} = 13.86 \times 10000 \: {m}^{2} [/tex] [tex]\rm :\longmapsto\:\dfrac{22}{7} \times {r}^{2} = 138600[/tex] [tex]\rm :\longmapsto\: {r}^{2} = 6300 \times 7[/tex] [tex]\rm :\longmapsto\:r = \sqrt{3 \times 3 \times 7 \times 100 \times 7} [/tex] [tex]\bf\implies \:r = 210 \: m[/tex] Now, To fence, around a circle, we have to find its perimeter. We have, Radius of circle, r = 210 m So, [tex]\rm :\longmapsto\:Perimeter_{(circle)} = 2\pi \: r[/tex] [tex]\rm :\longmapsto\:Perimeter_{(circle)} = 2 \times \dfrac{22}{7} \times 210[/tex] [tex]\rm :\longmapsto\:Perimeter_{(circle)} = 1320 \: m[/tex] Now, [tex]\rm :\longmapsto\:Cost \: of \: fencing \: 1 \: m \: = \: Rs \: 0.6[/tex] [tex]\rm :\longmapsto\:Cost \: of \:fencing \: 1320 \:m= 0.6 \times 1320 =Rs \: 792[/tex] Additional Information :- [tex] 1. \: \: \: \boxed{ \sf \: Area_{(rectangle)} = length \times breadth}[/tex] [tex] 2. \: \: \: \boxed{ \sf \: Perimeter_{(rectangle)} = 2(length + breadth}[/tex] [tex] 3. \: \: \: \boxed{ \sf \: Area_{(square)} = {(side)}^{2} }[/tex] [tex] 4. \: \: \: \boxed{ \sf \: Perimeter_{(square)} = 4 \times side}[/tex] Reply
[tex]\large\underline{\sf{Given- }}[/tex]
[tex]\large\underline{\sf{To\:Find – }}[/tex]
[tex]\begin{gathered}\Large{\sf{{\underline{Formula \: Used – }}}} \end{gathered}[/tex]
[tex] 1. \: \: \: \boxed{ \sf \: Area_{(circle)} = \pi \: {r}^{2} }[/tex]
[tex] 2. \: \: \: \boxed{ \sf \: Perimeter_{(circle)} = 2\pi \: r}[/tex]
[tex] 3. \: \: \: \boxed{ \sf \: 1 \: hectare = 10000 \: {m}^{2} }[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that
[tex]\rm :\longmapsto\:Area_{(circle)} = 13.86 \: hectare \: [/tex]
[tex]\rm :\longmapsto\:\pi \: {r}^{2} = 13.86 \times 10000 \: {m}^{2} [/tex]
[tex]\rm :\longmapsto\:\dfrac{22}{7} \times {r}^{2} = 138600[/tex]
[tex]\rm :\longmapsto\: {r}^{2} = 6300 \times 7[/tex]
[tex]\rm :\longmapsto\:r = \sqrt{3 \times 3 \times 7 \times 100 \times 7} [/tex]
[tex]\bf\implies \:r = 210 \: m[/tex]
Now,
To fence, around a circle, we have to find its perimeter.
We have,
So,
[tex]\rm :\longmapsto\:Perimeter_{(circle)} = 2\pi \: r[/tex]
[tex]\rm :\longmapsto\:Perimeter_{(circle)} = 2 \times \dfrac{22}{7} \times 210[/tex]
[tex]\rm :\longmapsto\:Perimeter_{(circle)} = 1320 \: m[/tex]
Now,
[tex]\rm :\longmapsto\:Cost \: of \: fencing \: 1 \: m \: = \: Rs \: 0.6[/tex]
[tex]\rm :\longmapsto\:Cost \: of \:fencing \: 1320 \:m= 0.6 \times 1320 =Rs \: 792[/tex]
Additional Information :-
[tex] 1. \: \: \: \boxed{ \sf \: Area_{(rectangle)} = length \times breadth}[/tex]
[tex] 2. \: \: \: \boxed{ \sf \: Perimeter_{(rectangle)} = 2(length + breadth}[/tex]
[tex] 3. \: \: \: \boxed{ \sf \: Area_{(square)} = {(side)}^{2} }[/tex]
[tex] 4. \: \: \: \boxed{ \sf \: Perimeter_{(square)} = 4 \times side}[/tex]