the angle of a quadrilateral are in the ratio of 3:4:5:6:. find the measure of each angle​

the angle of a quadrilateral are in the ratio of 3:4:5:6:. find the measure of each angle​

About the author
Natalia

2 thoughts on “the angle of a quadrilateral are in the ratio of 3:4:5:6:. find the measure of each angle​”

  1. Given : The angles of Quadrilateral is in ratio 3:4:5:6 .

    Exigency To Find : Measures of all angles of Quadrilateral.

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    ❍ Let’s Consider measure of all four angles of quadrilateral be 3x , 4x, 5x & 6x respectively. .

    [tex]\frak{\underline { \dag As \: We \:Know \:that \:,}}\\[/tex]

    • [tex]\underline {\boxed {\sf{ \star The \:sum\:of \:all\:angles \:of\:Quadrilateral \:is \:360\degree}}}\\\\\\[/tex]

    Or ,

    • [tex]\underline {\boxed {\sf{ \star \angle A + \angle B + \angle C + \angle D =\:360\degree}}}\\\\\\[/tex]

    Where ,

    • [tex]\angle A , \angle B , \angle C \:and\: \angle D [/tex] are the all four angles of Quadrilateral.

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]:\implies \tt{ 3x + 4x + 5x + 6x =\:360\degree}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]:\implies \tt{ 7x + 5x + 6x =\:360\degree}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]:\implies \tt{ 12x + 6x =\:360\degree}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]:\implies \tt{ 18x =\:360\degree}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]:\implies \tt{ x =\:\dfrac{\cancel {360}}{\cancel {18}}}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀[tex]\underline {\boxed{\pink{ \mathrm { x = 20\:\degree}}}}\:\bf{\bigstar}\\\\\\[/tex]

    Therefore,

    • First Angle of Quadrilateral is 3x = 3 × 20 = 60
    • Second angle of Quadrilateral is 4x = 4 × 20 = 80⁰
    • Third angle of Quadrilateral is 5x = 5 × 20 = 100⁰
    • Fourth Angle of Quadrilateral is 6x = 6 × 20 = 120⁰

    Therefore,

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\: Measure \:of\:all\:four\:angles \:of\:Quadrilateral \:are\:60\degree, \:80\degree ,\:100\degree \:\&\:120\degree \: }}}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    V E R I F I C A T I O N :

    [tex]\frak{\underline { \dag As \: We \:Know \:that \:,}}\\[/tex]

    • [tex]\underline {\boxed {\sf{ \star The \:sum\:of \:all\:angles \:of\:Quadrilateral \:is \:360\degree}}}\\\\\\[/tex]

    Or ,

    • [tex]\underline {\boxed {\sf{ \star \angle A + \angle B + \angle C + \angle D =\:360\degree}}}\\\\\\[/tex]

    Where ,

    • [tex]\angle A , \angle B , \angle C \:and\: \angle D [/tex] are the all four angles of Quadrilateral.

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]:\implies \tt{ 100\degree + 80\degree + 60\degree+ 120\degree =\:360\degree}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]:\implies \tt{ 1 80\degree + 180\degree =\:360\degree}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀[tex]\underline {\boxed{\pink{ \mathrm { 360\degree = 360\:\degree}}}}\:\bf{\bigstar}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    Reply
  2. Given:

    • Ratio of the angle of a quadrilateral = 3:4:5:6

    To Find:

    • Measure of each angle.

    Solution:-

    Let the ratio common be x.

    Hence,

    • 1st angle = 3x
    • 2nd angle = 4x
    • 3rd angle = 5x
    • 4th angle = 6x

    According to the angle sum property of a quadrilateral,

    ∠1 + ∠2 + ∠3 + ∠4 = 360°

    = 3x + 4x + 5x + 6x = 360°

    = 18x = 360°

    => x = 360/18

    => x = 20°

    • The value of x is 20°

    Putting the value of x in all the angles:-

    • ∠1 = 3x = 3 × 20 = 60°
    • ∠2 = 4x = 4 × 20 = 80°
    • ∠3 = 5x = 5 × 20 = 100°
    • ∠4 = 6x = 6 × 20 = 120°

    The four angles of the quadrilateral are 60°, 80°, 100°, 120° respectively.

    ________________________________

    Check Point!!!

    Let us check whether the sum of all the angles of this quadrilateral is 360° or not.

    = ∠1 + ∠2 + ∠3 + ∠4 = 360°

    = 60° + 80° + 100° + 120° = 360°

    = 140° + 220° = 360°

    = 360° = 360°

    [tex]\therefore[/tex] Yes the sum of all the angles of this quadrilateral is 360°. Hence all the angles we got are correct.

    ________________________________

    Reply

Leave a Reply to Charlotte Cancel reply