The 19th term of an AP is equal to three times its 6th term. If its 9th term is 19, find the A.P. December 30, 2021 by Kinsley The 19th term of an AP is equal to three times its 6th term. If its 9 th term is 19, find the A.P.
a19 = 3 × a6 a9 = 19 a19 = 3 × a6 a + 18d = 3 (a + 5d) a + 18d = 3a + 15d 3a – a = 18d – 15d 2a = 3d [tex]a = \frac{3d}{2} [/tex] [tex]a9 = 19 \\ a + 8d = 19 \\ \frac{3d}{2} + 8d = 19 \\ \\ \frac{3d + 16d}{2} = 19 \\ \\ 19d = 38 \\ d = \frac{38}{19} \\ \\ d = 2[/tex] [tex]a = \frac{3d}{2} \\ \\ a = \frac{3 \times 2}{2} \\ \\ a = \frac{6}{2} \\ \\ a = 3[/tex] [tex]a.p = 3 \: 5 \: 7…[/tex] Verification : [tex]a1 = a = 3 \\ d = 2 \\ a19 = a + 18d \\ a19 = 3 + 18 \times 2 \\ a19 = 3 + 36 \\ a19 = 39[/tex] [tex]a6 = a + 5d \\ a6 = 3 + 5 \times 2 \\ a6 = 3 + 10 \\ a6 = 13[/tex] [tex]a19 = 3 \times a6 \\ 39 = 3 \times 13 \\ 39 = 39 \\ hence \: verified[/tex] Log in to Reply
a19 = 3 × a6
a9 = 19
a19 = 3 × a6
a + 18d = 3 (a + 5d)
a + 18d = 3a + 15d
3a – a = 18d – 15d
2a = 3d
[tex]a = \frac{3d}{2} [/tex]
[tex]a9 = 19 \\ a + 8d = 19 \\ \frac{3d}{2} + 8d = 19 \\ \\ \frac{3d + 16d}{2} = 19 \\ \\ 19d = 38 \\ d = \frac{38}{19} \\ \\ d = 2[/tex]
[tex]a = \frac{3d}{2} \\ \\ a = \frac{3 \times 2}{2} \\ \\ a = \frac{6}{2} \\ \\ a = 3[/tex]
[tex]a.p = 3 \: 5 \: 7…[/tex]
Verification :
[tex]a1 = a = 3 \\ d = 2 \\ a19 = a + 18d \\ a19 = 3 + 18 \times 2 \\ a19 = 3 + 36 \\ a19 = 39[/tex]
[tex]a6 = a + 5d \\ a6 = 3 + 5 \times 2 \\ a6 = 3 + 10 \\ a6 = 13[/tex]
[tex]a19 = 3 \times a6 \\ 39 = 3 \times 13 \\ 39 = 39 \\ hence \: verified[/tex]