[tex] \large{ \underline{ \underline{ \bigstar \: \: \: \: \pmb{ \sf{Question \: : }}}}}[/tex]
[tex] \odot \: \: \: \: ɪғ \: \: \sf{ {x}^{5} + {y}^{5} = {x}^{3} {y}^{2} }, sʜᴏᴡ \: \: ᴛʜᴀᴛ \: \: \sf { \frac{dy}{dx} = \frac{y}{x} } \\ [/tex]
Appropriate Question :-
[tex]\rm :\longmapsto\:ɪғ \: {(x + y)}^{5} = {x}^{3} {y}^{2}, \: sʜᴏᴡ \: ᴛʜᴀᴛ \: \dfrac{dy}{dx} = \dfrac{y}{x} [/tex]
Formula Used :-
[tex] \red{ \boxed{ \sf{ \: log(xy) = logx + logy }}}[/tex]
[tex] \red{ \boxed{ \sf{ log( {x}^{y} ) \: = \: y \: logx}}}[/tex]
[tex] \red{ \boxed{ \sf{ \dfrac{d}{dx}x\: = \: 1}}}[/tex]
[tex] \red{ \boxed{ \sf{ \dfrac{d}{dx}logx\: = \: \frac{1}{x} }}}[/tex]
Solution :-
Given function is
[tex]\rm :\longmapsto\: {(x + y)}^{5} = {x}^{3} {y}^{2} [/tex]
On taking log both sides, we get
[tex]\rm :\longmapsto\:log {(x + y)}^{5} =log( {x}^{3} {y}^{2} )[/tex]
[tex]\rm :\longmapsto\:5 log(x + y) = log( {x}^{3} ) + log( {y}^{2} ) [/tex]
[tex]\rm :\longmapsto\:5 log(x + y) = 3 log( {x}) + 2log( {y} ) [/tex]
On differentiating both sides w. r. t. x, we get
[tex]\rm :\longmapsto\:\dfrac{d}{dx}5 log(x + y) = \dfrac{d}{dx}3 log( {x}) + \dfrac{d}{dx} 2log( {y} ) [/tex]
[tex]\rm :\longmapsto\:5\dfrac{d}{dx} log(x + y) = 3\dfrac{d}{dx}log( {x}) +2 \dfrac{d}{dx} log( {y} ) [/tex]
[tex]\rm :\longmapsto\:5 \times \dfrac{1}{x + y} \bigg(1 + \dfrac{dy}{dx} \bigg) = \dfrac{3}{x} + \dfrac{2}{y}\dfrac{dy}{dx}[/tex]
[tex]\rm :\longmapsto\:\dfrac{5}{x + y} \bigg(1 + \dfrac{dy}{dx} \bigg) = \dfrac{3}{x} + \dfrac{2}{y}\dfrac{dy}{dx}[/tex]
[tex]\rm :\longmapsto\:\dfrac{5}{x + y} + \dfrac{5}{x + y} \dfrac{dy}{dx} = \dfrac{3}{x} + \dfrac{2}{y}\dfrac{dy}{dx}[/tex]
[tex]\rm :\longmapsto\: \dfrac{5}{x + y} \dfrac{dy}{dx} – \dfrac{2}{y}\dfrac{dy}{dx}= \dfrac{3}{x} – \dfrac{5}{x + y} [/tex]
[tex]\rm :\longmapsto\: \bigg(\dfrac{5}{x + y} – \dfrac{2}{y} \bigg)\dfrac{dy}{dx}= \dfrac{3}{x} – \dfrac{5}{x + y} [/tex]
[tex]\rm :\longmapsto\: \bigg(\dfrac{5y – 2x – 2y}{y(x + y)} \bigg)\dfrac{dy}{dx}= \dfrac{3x + 3y – 5x}{x(x + y)} [/tex]
[tex]\rm :\longmapsto\: \bigg(\dfrac{3y – 2x}{y(x + y)} \bigg)\dfrac{dy}{dx}= \dfrac{3y – 2x}{x(x + y)} [/tex]
[tex]\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = \dfrac{1}{x}[/tex]
[tex]\bf\implies \:\dfrac{dy}{dx} = \dfrac{y}{x} [/tex]
Short Cut Trick
[tex] \boxed{\bf :\longmapsto\:ɪғ \: {(x + y)}^{m + n} = {x}^{m} {y}^{n}, \: then\: \dfrac{dy}{dx} = \dfrac{y}{x} }[/tex]