# $$\int\limits^\pi _0 {sinx} \, dx$$ Pls find the explanation for the answer of this question.. No scam p

$$\int\limits^\pi _0 {sinx} \, dx$$

Pls find the explanation for the answer of this question..
No scam pls…

### 2 thoughts on “$$\int\limits^\pi _0 {sinx} \, dx$$ <br /><br /> Pls find the explanation for the answer of this question..<br /> No scam p”

1. Given :   $$\int\limits^\pi_0 {\sin x} \, dx$$

To Find :  Solve

Solution:

let say

$$y=\int\limits^\pi_0 {\sin x} \, dx$$

on integration

$$y=\left[ {-\cos x} \right]^\pi_0$$

=> y  = – ( cosπ  – cos0 )

=> y =  – (-1 –  1)

=> y = 2

integral of 6x-5 root of 6-2x^2+xdx evaluate – Brainly.in

brainly.in/question/15708198

integrate x³-1/x³+x dx – Brainly.in

brainly.in/question/3017912

Integrate dx/ 3sin^2x+5cos^2x – Brainly.in

brainly.in/question/9262036

2. ### Topic :- Basic Maths

$$\maltese\:\underline{\textsf{\textbf{AnsWer :}}}\:\maltese$$

Definite Integral

$$\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}$$

$$\longrightarrow\:\:\sf\displaystyle \sf \int\limits_{0}^{\pi} \sin(x) \, dx \\$$

$$\longrightarrow\:\:\sf\displaystyle \sf \Bigg[ – \cos(x) \Bigg]^{\pi}_{0} \\$$

$$\longrightarrow\:\:\sf\displaystyle \sf \Bigg[ – \cos(\pi) – \bigg( – \cos(0) \bigg) \Bigg]\\$$

$$\longrightarrow\:\:\sf\displaystyle \sf \Bigg[ – \cos(\pi) + \cos(0) \Bigg]\\$$

$$\longrightarrow\:\:\sf\displaystyle \sf \Bigg[ – \cos(180^{\circ}) + \cos(0) \Bigg]\\$$

$$\longrightarrow\:\:\sf\displaystyle \sf- ( – 1) + 1\\$$

$$\longrightarrow\:\:\sf\displaystyle \sf 1 + 1\\$$

$$\longrightarrow\: \: \underline{ \boxed{ \sf\displaystyle \sf 2}}\\$$

$$\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}$$

$$\footnotesize \bullet\displaystyle \sf \int\limits { x}^{n} \, dx =\frac{ {x}^{n + 1} }{n + 1} + c \\\\\footnotesize\bullet\displaystyle \sf \int\limits {e}^{x} \, dx = {e}^{x} + c \\\\\footnotesize\bullet\displaystyle \sf \int\limits \frac{1}{ x } \, dx = ln(x) + c \\ \\ \footnotesize\bullet\displaystyle \sf \int\limits \sin(x) \, dx = – \cos(x) + c \\ \\ \footnotesize\bullet\displaystyle \sf \int\limits \cos(x) \, dx = \sin(x) + c \\ \\ \footnotesize\bullet\displaystyle \sf \int\limits \sec^{2} (x) \, dx = \tan(x) + c$$

$$\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}$$

$$\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}$$