[tex]\huge{\underline{\underline{\bf Question}}}[/tex]
Speed of a Boat on still water is 15 km/hr. It goes 30 km upstream and returns back at the same point 4 hours 30 minutes. Find the speed of the stream
Don’t even dare to spam ❌
Step by step explanation ✅
Correct answer will be marked as Brainliest ⭐
Good luck
Given :
To Find :
Solution :
Let the Speed of stream be x
Speed of stream in upstream = (15-x)
Speed of stream in downstream = (15+x)
Formula To Be used,
[tex]\sf Speed = \dfrac{distance}{Time\:taken}\\\\\boxed{\boxed{\sf Time\:taken =\dfrac{distance}{Speed}}}[/tex]
Given that,
Substituting values,
[tex]\sf \rightarrow \dfrac{30}{(15+x)}+\dfrac{30}{(15-x)} =\dfrac{9}{2}\\\\\sf\rightarrow \dfrac{30(15-x)+30(15+x)}{(15+x)(15-x)}=\dfrac{9}{2}\\\\\sf \rightarrow\dfrac{450-{\cancel{30x}}+450+{\cancel{30x}}}{((15)^2-x^2)}\\\\\sf\rightarrow \dfrac{900}{(225-x^2)}=\dfrac{9}{2}\\\\\sf\rightarrow 2(900) = 9(225 – x^2)\\\\\sf \rightarrow1800 = 2025 -9x^2 \\\\\sf \rightarrow 1800 – 2025 = -9x^2\\\\\sf\rightarrow -9x^2 = -225\\\\\sf\rightarrow x^2 = \dfrac{-225}{-9}\\\\\sf\rightarrow x^2=25\\\\\sf \rightarrow x = \pm 5[/tex]
Note :– Speed can not be negative
Required Answer :
Speed of the stream is [tex]\underline{\sf 5\:km/h}[/tex]
[tex]\sf\underline \red{ Given}[/tex]
[tex]\sf\underline \gray{ To\:Find}[/tex]
[tex]\sf\underline \pink{ Solution}[/tex]
According to the Question,
By cross-multiplication, we get
(As speed can’t be negative)
Hence, the speed of stream is 5 km/h.