[tex] \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11} } = x + y \sqrt{11} [/tex]
Find the value of ‘x’ and ‘y’​

By Anna

[tex] \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11} } = x + y \sqrt{11} [/tex]
Find the value of ‘x’ and ‘y’​

About the author
Anna

2 thoughts on “<br />[tex] \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11} } = x + y \sqrt{11} [/tex]<br />Find the value of ‘x’ and ‘y’​”

  1. Answer:

    3−2

    11

    5+

    11

    =x+y

    11

    To Find:

    Find the value of x and y

    Solution:

    \begin{gathered} \implies \tt \bold{ \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11} } = x + y \sqrt{11} } \\ \end{gathered}

    3−2

    11

    5+

    11

    =x+y

    11

    Rewrite the LHS and RHS .

    \begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11} } } \\ \end{gathered}

    ⟹x+y

    11

    =

    3−2

    11

    5+

    11

    Now , Rationalize the denominator by 3+2√11

    \begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11}} } \bold{ \times \frac{3 + 2 \sqrt{11} }{3 + 2 \sqrt{11} }} \\ \end{gathered}

    ⟹x+y

    11

    =

    3−2

    11

    5+

    11

    ×

    3+2

    11

    3+2

    11

    Simplify the RHS

    By using the formula a²-b²=(a+b)(a-b)

    \begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{(5 + \sqrt{11})(3 + 2 \sqrt{11}) }{ {3}^{2} – 4(11)} } \\ \end{gathered}

    ⟹x+y

    11

    =

    3

    2

    −4(11)

    (5+

    11

    )(3+2

    11

    )

    \begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{15 + 13 \sqrt{11} + 22 }{ – 35} } \\ \end{gathered}

    ⟹x+y

    11

    =

    −35

    15+13

    11

    +22

    Adding the numbers 15 and 22 is 37 .

    \begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{37 + 13 \sqrt{11} }{ – 35}} \\ \end{gathered}

    ⟹x+y

    11

    =

    −35

    37+13

    11

    Now , the comparing the LHS AND RHS.

    \begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{ – 37}{35} – \frac{13}{35} \sqrt{11}} \\ \end{gathered}

    ⟹x+y

    11

    =

    35

    −37

    35

    13

    11

    \therefore \boxed{ \bf{ \red{x = \frac{ – 37}{35}}} }∴

    x=

    35

    −37

    \therefore \boxed{ \red{ \bf{y = \frac{ – 13}{35}}}}∴

    y=

    35

    −13

    H

    Step-by-step explanation:

    please mark me as brainlist

    Reply
  2. Step-by-step explanation:

    [tex] \huge \textbf{ \underline{Answer :-}}[/tex]

    Given :

    • [tex] \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11} } = x + y \sqrt{11} [/tex]

    To Find:

    • Find the value of x and y

    Solution:

    [tex] \implies \tt \bold{ \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11} } = x + y \sqrt{11} } \\ [/tex]

    Rewrite the LHS and RHS .

    [tex]\implies \tt \bold{ x + y \sqrt{11} = \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11} } } \\ [/tex]

    Now , Rationalize the denominator by 3+211

    [tex]\implies \tt \bold{ x + y \sqrt{11} = \frac{5 + \sqrt{11} }{3 – 2 \sqrt{11}} } \bold{ \times \frac{3 + 2 \sqrt{11} }{3 + 2 \sqrt{11} }} \\ [/tex]

    Simplify the RHS

    By using the formula a²-b²=(a+b)(a-b)

    [tex]\implies \tt \bold{ x + y \sqrt{11} = \frac{(5 + \sqrt{11})(3 + 2 \sqrt{11}) }{ {3}^{2} – 4(11)} } \\ [/tex]

    [tex]\implies \tt \bold{ x + y \sqrt{11} = \frac{15 + 13 \sqrt{11} + 22 }{ – 35} } \\ [/tex]

    Adding the numbers 15 and 22 is 37 .

    [tex]\implies \tt \bold{ x + y \sqrt{11} = \frac{37 + 13 \sqrt{11} }{ – 35}} \\ [/tex]

    Now , the comparing the LHS AND RHS.

    [tex]\implies \tt \bold{ x + y \sqrt{11} = \frac{ – 37}{35} – \frac{13}{35} \sqrt{11}} \\ [/tex]

    [tex] \therefore \boxed{ \bf{ \red{x = \frac{ – 37}{35}}} }[/tex]

    [tex] \therefore \boxed{ \red{ \bf{y = \frac{ – 13}{35}}}} [/tex]

    Hope it will help you mate !!

    Mark as Brainlist !!

    Reply

Leave a Reply to Eva Cancel reply