Sundram says. “I have thought of such a number, that if I multiply it by 4 and thensubtract 5. I get the same result as multiplying the number first by 2 and then adding 1,What is the number that Sundram has thought of? About the author Mary
[tex]\large{\underline{\underline{\rm{Solution:}}}}[/tex] [tex]\rm{Sundaram\:thought\:of\:a\:number.}[/tex] [tex]\multimap\rm{Let\:the\:number\:be\:x.}[/tex] [tex]\rm{He\:multiplies\:it\:by\:4.}[/tex] [tex]\multimap\rm{Then,\:the\:number\:will\:be\:4x.}[/tex] [tex]\rm{Then,\:he\:subtracts\:it\:by\:5.}[/tex] [tex]\multimap\rm{Then,\:the\:number\:will\:be\:4x-5.}[/tex] [tex]\underline{\rm{Now,\:According\:to\:the\:Question:}}[/tex] [tex]\multimap\rm{4x-5 = (Number \times 2)+1}[/tex] [tex]\multimap\rm{4x-5 = (x \times 2)+1}[/tex] [tex]\multimap\rm{4x-5 = 2x+1}[/tex] [tex]\multimap\rm{4x-2x-5 = 1}[/tex] [tex]\multimap\rm{2x-5 = 1}[/tex] [tex]\multimap\rm{2x = 1+5}[/tex] [tex]\multimap\rm{2x = 6}[/tex] [tex]\multimap\rm{x = \dfrac{6}{2}}[/tex] [tex]\multimap\rm{x = 3}[/tex] [tex]\large{\underline{\underline{\rm{Final\:Answer:}}}}[/tex] [tex]\rm{The\:required\:number\:is\:3.}[/tex] Reply
Consider the number Sundaram thought be ‘a’. Then, according to him, 4a–5=2a+1 ➡️4a–2a=1+5 ➡️2a=6 ➡️a=6/2 ➡️a=3 Therefore the number is 3. Reply
[tex]\large{\underline{\underline{\rm{Solution:}}}}[/tex]
[tex]\rm{Sundaram\:thought\:of\:a\:number.}[/tex]
[tex]\multimap\rm{Let\:the\:number\:be\:x.}[/tex]
[tex]\rm{He\:multiplies\:it\:by\:4.}[/tex]
[tex]\multimap\rm{Then,\:the\:number\:will\:be\:4x.}[/tex]
[tex]\rm{Then,\:he\:subtracts\:it\:by\:5.}[/tex]
[tex]\multimap\rm{Then,\:the\:number\:will\:be\:4x-5.}[/tex]
[tex]\underline{\rm{Now,\:According\:to\:the\:Question:}}[/tex]
[tex]\multimap\rm{4x-5 = (Number \times 2)+1}[/tex]
[tex]\multimap\rm{4x-5 = (x \times 2)+1}[/tex]
[tex]\multimap\rm{4x-5 = 2x+1}[/tex]
[tex]\multimap\rm{4x-2x-5 = 1}[/tex]
[tex]\multimap\rm{2x-5 = 1}[/tex]
[tex]\multimap\rm{2x = 1+5}[/tex]
[tex]\multimap\rm{2x = 6}[/tex]
[tex]\multimap\rm{x = \dfrac{6}{2}}[/tex]
[tex]\multimap\rm{x = 3}[/tex]
[tex]\large{\underline{\underline{\rm{Final\:Answer:}}}}[/tex]
[tex]\rm{The\:required\:number\:is\:3.}[/tex]
Consider the number Sundaram thought be ‘a’.
Then, according to him,
4a–5=2a+1
➡️4a–2a=1+5
➡️2a=6
➡️a=6/2
➡️a=3
Therefore the number is 3.