Sum of two consecutive square of number are 481. Find the sum of the two number About the author Piper
let first number = X let second number = X+1 square of the two number (X)^2 + (X+1)^2 =481 x^2 + x^2+1+2x =481 2x^2 +2x +1-481 2(X2+x-240) =0 X2 +X -240 X2 +16x -15x -240 X(X+16) -15(X+16) x-15) (X+16) X=15 X=-16 Reply
[tex]\large\bf{\underline{\underline{Question:−}}}[/tex] The sum of the squares of two consecutive positive integers is 481. Find the integers. [tex]\large\bf{\underline{\underline{Answer:−}}}[/tex] [tex]\color{red}\longrightarrow{}[/tex][tex]\rm{x² + (x+1)^2 = 481}[/tex] [tex]\color{red}\longrightarrow{}[/tex][tex]\rm{x^2 + x^2 + 2x + 1 = 481}[/tex] [tex]\color{red}\longrightarrow{}[/tex][tex]\rm{2x^2 + 2x + 1 – 481 = 0}[/tex] [tex]\color{red}\longrightarrow{}[/tex][tex]\rm{2x^2 + 2x – 480 = 0}[/tex] [tex]\underline\bold\color{purple}{Simplify,}[/tex] [tex]\sf{Divide\: by\: 2}[/tex] [tex]\rm{x^2 + x – 240 = 0}[/tex] [tex]\sf{Factors \:to}[/tex] [tex]\rm{(x+16)(x-15) = 0}[/tex] [tex]\sf{positive \:solution}[/tex] x=15 & 16 are the integers [tex]\tt{See \:if\: that\: works}[/tex] [tex]\color{teal}\underline{\underline{ \tt{{ \boxed {15^2 + 16^2 = 225 + 256 = 481} }}}}[/tex] ─━─━─━─━─━─━─━─━─━─━─━─━─ Thankyou 🙂 Reply
let first number = X
let second number = X+1
square of the two number
(X)^2 + (X+1)^2 =481
x^2 + x^2+1+2x =481
2x^2 +2x +1-481
2(X2+x-240) =0
X2 +X -240
X2 +16x -15x -240
X(X+16) -15(X+16)
x-15) (X+16)
X=15
X=-16
[tex]\large\bf{\underline{\underline{Question:−}}}[/tex]
The sum of the squares of two consecutive positive integers is 481. Find the integers.
[tex]\large\bf{\underline{\underline{Answer:−}}}[/tex]
[tex]\color{red}\longrightarrow{}[/tex][tex]\rm{x² + (x+1)^2 = 481}[/tex]
[tex]\color{red}\longrightarrow{}[/tex][tex]\rm{x^2 + x^2 + 2x + 1 = 481}[/tex]
[tex]\color{red}\longrightarrow{}[/tex][tex]\rm{2x^2 + 2x + 1 – 481 = 0}[/tex]
[tex]\color{red}\longrightarrow{}[/tex][tex]\rm{2x^2 + 2x – 480 = 0}[/tex]
[tex]\underline\bold\color{purple}{Simplify,}[/tex]
[tex]\sf{Divide\: by\: 2}[/tex]
[tex]\rm{x^2 + x – 240 = 0}[/tex]
[tex]\sf{Factors \:to}[/tex]
[tex]\rm{(x+16)(x-15) = 0}[/tex]
[tex]\sf{positive \:solution}[/tex]
x=15 & 16 are the integers
[tex]\tt{See \:if\: that\: works}[/tex]
[tex]\color{teal}\underline{\underline{ \tt{{ \boxed {15^2 + 16^2 = 225 + 256 = 481} }}}}[/tex]
─━─━─━─━─━─━─━─━─━─━─━─━─
Thankyou 🙂