sum of digits of two digit number is 9. If we interchange the digit than sum of original number and new number is 99. Find the original number About the author Amara
[tex]\large\underline{\sf{Solution-}}[/tex] [tex]\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{digit \: at \: ones \: place \: = x} \\ &\sf{digit \: at \: tens \: place \: = y} \end{cases}\end{gathered}\end{gathered}[/tex] [tex]\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10y + x} \\ &\sf{reverse \: number = 10x + y} \end{cases}\end{gathered}\end{gathered}[/tex] According to first condition, Sum of the digits of 2 digit number is 9 [tex]\bf :\longmapsto\:x + y = 9 – – (1)[/tex] According to second condition, Sum of original number and number formed by interchanging the digits is 99. [tex]\rm :\longmapsto\:10y + x + 10 + y = 99[/tex] [tex]\rm :\longmapsto\:11x + 11y = 99[/tex] [tex]\rm :\longmapsto\:x + y = 9[/tex] So, possible pairs so that x + y = 9 [tex]\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 9 \\ \\ \sf 1 & \sf 8 \\ \\\sf 2 & \sf 7 \\ \\ \sf 3 & \sf 6 \\ \\\sf 4 & \sf 5 \\ \\ \sf 5 & \sf 4 \\ \\ \sf 6 & \sf 3 \\ \\\sf 7 & \sf 2 \\ \\\sf 8 & \sf 1 \\ \\ \sf & \sf \end{array}} \\ \end{gathered}[/tex] So, possible 2 digit numbers are 90, 81, 72, 63, 54, 45, 36, 27, 18 Basic Concept Used :- Writing Systems of Linear Equation from Word Problem. 1. Understand the problem. Understand all the words used in stating the problem. Understand what you are asked to find. 2. Translate the problem to an equation. Assign a variable (or variables) to represent the unknown. Clearly state what the variable represents. 3. Carry out the plan and solve the problem. Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
[tex]\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{digit \: at \: ones \: place \: = x} \\ &\sf{digit \: at \: tens \: place \: = y} \end{cases}\end{gathered}\end{gathered}[/tex]
[tex]\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10y + x} \\ &\sf{reverse \: number = 10x + y} \end{cases}\end{gathered}\end{gathered}[/tex]
According to first condition,
Sum of the digits of 2 digit number is 9
[tex]\bf :\longmapsto\:x + y = 9 – – (1)[/tex]
According to second condition,
Sum of original number and number formed by interchanging the digits is 99.
[tex]\rm :\longmapsto\:10y + x + 10 + y = 99[/tex]
[tex]\rm :\longmapsto\:11x + 11y = 99[/tex]
[tex]\rm :\longmapsto\:x + y = 9[/tex]
So, possible pairs so that x + y = 9
[tex]\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 9 \\ \\ \sf 1 & \sf 8 \\ \\\sf 2 & \sf 7 \\ \\ \sf 3 & \sf 6 \\ \\\sf 4 & \sf 5 \\ \\ \sf 5 & \sf 4 \\ \\ \sf 6 & \sf 3 \\ \\\sf 7 & \sf 2 \\ \\\sf 8 & \sf 1 \\ \\ \sf & \sf \end{array}} \\ \end{gathered}[/tex]
So, possible 2 digit numbers are 90, 81, 72, 63, 54, 45, 36, 27, 18
Basic Concept Used :-
Writing Systems of Linear Equation from Word Problem.
1. Understand the problem.
2. Translate the problem to an equation.
3. Carry out the plan and solve the problem.