solve the following a(x+y)+b(x-y)-(a²-ab+b²)=0 and a(x+y)-b(x-y)-(a²+ab+b²)=0 About the author Nevaeh
Step-by-step explanation: Taking x+y=u and x−y=v the given system of equations becomes au+bu−(a 2 −ab+b 2 )=0 au−bv−(a 2 +ab+b 2 )=0 By cross-multiplication, we have ⇒ b×−(a 2 +ab+b 2 )−(−b)×−(a 2 −ab+b 2 ) u = a×−(a 2 +ab+b 2 )+a(a 2 −ab+b 2 ) −v = a×−b−a×b 1 ⇒ −b(a 2 +ab+b 2 )−−b(a 2 −ab+b 2 ) u = −a(a 2 +ab+b 2 )+a(a 2 −ab+b 2 ) −v = −ab−ab 1 ⇒ −b(a 2 +ab+b 2 +a 2 −ab+b 2 ) u = −a(a 2 +ab+b 2 −a 2 +ab−b 2 ) −v = −2ab 1 ⇒ −2b(a 2 +b 2 ) u = −a(2ab) −v = −2ab 1 ⇒u= −2ab −2b(a 2 +b 2 ) ,v= −2ab 2a 2 b ⇒u= a a 2 +b 2 ,v=−a Now, u= a a 2 +b 2 ⇒x+y= a a 2 +b 2 .(i) and, v=−a⇒x−y=−a ..(ii) Adding equations (i) and (ii), we get 2x= a a 2 +b 2 −a⇒2x= a a 2 +b 2 −a 2 ⇒2x= a b 2 ⇒x= 2a b 2 Substitutiing equation (ii) from equation (i), we get 2y= a a 2 +b 2 +a⇒2y= a a 2 +b 2 +a 2 ⇒y= 2a 2a 2 +b 2 Hence, the solution of the given system of equations is x= 2a b 2 ,y= 2a 2a 2 +b 2 . Reply
Step-by-step explanation:
Taking x+y=u and x−y=v the given system of equations becomes
au+bu−(a
2
−ab+b
2
)=0
au−bv−(a
2
+ab+b
2
)=0
By cross-multiplication, we have
⇒
b×−(a
2
+ab+b
2
)−(−b)×−(a
2
−ab+b
2
)
u
=
a×−(a
2
+ab+b
2
)+a(a
2
−ab+b
2
)
−v
=
a×−b−a×b
1
⇒
−b(a
2
+ab+b
2
)−−b(a
2
−ab+b
2
)
u
=
−a(a
2
+ab+b
2
)+a(a
2
−ab+b
2
)
−v
=
−ab−ab
1
⇒
−b(a
2
+ab+b
2
+a
2
−ab+b
2
)
u
=
−a(a
2
+ab+b
2
−a
2
+ab−b
2
)
−v
=
−2ab
1
⇒
−2b(a
2
+b
2
)
u
=
−a(2ab)
−v
=
−2ab
1
⇒u=
−2ab
−2b(a
2
+b
2
)
,v=
−2ab
2a
2
b
⇒u=
a
a
2
+b
2
,v=−a
Now, u=
a
a
2
+b
2
⇒x+y=
a
a
2
+b
2
.(i)
and, v=−a⇒x−y=−a ..(ii)
Adding equations (i) and (ii), we get
2x=
a
a
2
+b
2
−a⇒2x=
a
a
2
+b
2
−a
2
⇒2x=
a
b
2
⇒x=
2a
b
2
Substitutiing equation (ii) from equation (i), we get
2y=
a
a
2
+b
2
+a⇒2y=
a
a
2
+b
2
+a
2
⇒y=
2a
2a
2
+b
2
Hence, the solution of the given system of equations is x=
2a
b
2
,y=
2a
2a
2
+b
2
.