Solve by matrix method 3x + 2y +z = 10, 4x + y + 3z = 15, x + y + z = 6.

Solve by matrix method 3x + 2y +z = 10, 4x + y + 3z = 15, x + y + z = 6.

About the author
Hadley

2 thoughts on “Solve by matrix method 3x + 2y +z = 10, 4x + y + 3z = 15, x + y + z = 6.<br />​”

  1. [tex]{\huge{\boxed{\sf{\green{Answer}}}}}[/tex]

    Given:

    3x+2y+z=10,

    4x+y+3z=15,

    x+y+z=6

    To find:

    Find the values of x, y, and z.

    Solution:

    [tex]\begin{gathered}A = \left[\begin{array}{ccc}3&2&1\\4&1&3\\1&1&1\end{array}\right]\end{gathered} A= ⎣⎢⎡​ 341​ 211​ 131​ ⎦⎥⎤​ ​ \begin{gathered}X = \left[\begin{array}{ccc}x\\y\\z\end{array}\right]\end{gathered} X= ⎣⎢⎡​ xyz​ ⎦⎥⎤[/tex]

    [tex]\begin{gathered}B = \left[\begin{array}{ccc}10\\15\\6\end{array}\right]\end{gathered} B= ⎣⎢⎡​ 10156​ ⎦⎥⎤​ ​[/tex]

    AX = B

    A⁻¹AX = A⁻¹B

    IX = A⁻¹B

    X = A⁻¹B

    To find inverse of A use AA⁻¹ = I

    So,

    [tex]\begin{gathered}A^{-1} = \left[\begin{array}{ccc}2/5&1/5&-1\\1/5&-2/5&1\\-3/5&1/5&1\end{array}\right]\end{gathered} A −1 = ⎣⎢⎡​ 2/51/5−3/5​ 1/5−2/51/5​ −111​ ⎦⎥⎤​ ​ X = A⁻¹B[/tex]

    [tex]\begin{gathered}\left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}2/5&1/5&-1\\1/5&-2/5&1\\-3/5&1/5&1\end{array}\right]\left[\begin{array}{ccc}10\\15\\6\end{array}\right]\end{gathered} ⎣⎢⎡​ xyz​ ⎦⎥⎤​ = ⎣⎢⎡​ 2/51/5−3/5​ 1/5−2/51/5​ −111​ ⎦⎥⎤​ ⎣⎢⎡​ 10156​ ⎦⎥⎤[/tex]

    [tex]\begin{gathered}\left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}2/5*10+1/5*15+(-1)*6\\1/5*10+(-2/5)*15+1*6\\(-3/5)*10+1/5*15+1*6\end{array}\right]\end{gathered} ⎣⎢⎡​ xyz​ ⎦⎥⎤​ = ⎣⎢⎡​ 2/5∗10+1/5∗15+(−1)∗61/5∗10+(−2/5)∗15+1∗6(−3/5)∗10+1/5∗15+1∗6​ ⎦⎥⎤[/tex]

    [tex]\begin{gathered}\left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}1\\2\\3\end{array}\right]\end{gathered} ⎣⎢⎡​ xyz​ ⎦⎥⎤​ = ⎣⎢⎡​ 123​ ⎦⎥⎤​[/tex]

    So,

    x = 1

    y = 2

    z = 3

    Therefore, the value of x = 1, y = 2, and z = 3

    Reply

Leave a Reply to Mia Cancel reply