show that (x-3) is a factor of the polynomial xcube[tex]show \: that \: {x – 3} \: is \: a \: factor \: of \: the \: polynomil \: xcube – 3 {x }^{2} + 4x – 12[/tex]-3xsq+4x-12. About the author Adalyn
[tex]\red{\large\mathfrak {Question}}[/tex] [tex] \sf \: Show \: that \: \: {x – 3} \: is \: a \: factor \: of \: the \: polynomial \: {x}^{3} – 3 {x }^{2} + 4x – 12[/tex] [tex]\green{\large\mathfrak {solution}}[/tex] Let p(x) = x³ – 3x² + 4x – 12 and g(x) = x-3 [tex] \sf \: (x – \alpha ) = (x – ( – 3))[/tex] [tex]⇒ \sf \: (x – \alpha ) = (x + 3)[/tex] A/q remainder theorum :— [tex] \sf \: if \: g(x) \: is \: a \: factor \: of \: p(x) \: then \:p ( – \ alpha ) = 0[/tex] ⇒ p(3) = (3)³ – 3(3)² + 4(3) – 12 ∴ p(3)=0 = 27-3×9+12-12 = 27-27+12-12 = 0 [tex]\bold{\boxed{\blue{∵p(x) = 0 }}}[/tex] Hence proved that g(x) is a factor of p(x). [tex]\pink{\large\mathfrak { \: \: \: \: !! \: hope \: it \: helps \: you \:!!}}[/tex] Reply
Answer: [tex]\mathtt\green{SOLUTION:-}[/tex] [tex] \mathtt{x – 3 = 0}[/tex] [tex]\mathtt{x = 0 + 3}[/tex] [tex] \mathtt{x = 3}[/tex] [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex] [tex]\mathtt{NOW \: SUBSTITUTE \: THE \: VALUE \: OF \: X}[/tex] [tex] \mathtt \green{ = {x}^{3} – {3x}^{2} + 4x – 12 }[/tex] [tex] \mathtt \green{ = {3}^{3} – 3 \times {3}^{2} + 4 \times 3 – 12 }[/tex] [tex] \mathtt \green{ = 27 – 27 + 12 – 12}[/tex] [tex] \mathtt \green{ = 0}[/tex] [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex] [tex]\mathtt{YES, X-3 \: IS \: THE \: FACTOR \: OF \: THIS \: POLYNOMIAL}[/tex] Reply
[tex]\red{\large\mathfrak {Question}}[/tex]
[tex] \sf \: Show \: that \: \: {x – 3} \: is \: a \: factor \: of \: the \: polynomial \: {x}^{3} – 3 {x }^{2} + 4x – 12[/tex]
[tex]\green{\large\mathfrak {solution}}[/tex]
Let p(x) = x³ – 3x² + 4x – 12
and g(x) = x-3
[tex] \sf \: (x – \alpha ) = (x – ( – 3))[/tex]
[tex]⇒ \sf \: (x – \alpha ) = (x + 3)[/tex]
A/q remainder theorum :—
[tex] \sf \: if \: g(x) \: is \: a \: factor \: of \: p(x) \: then \:p ( – \ alpha ) = 0[/tex]
⇒ p(3) = (3)³ – 3(3)² + 4(3) – 12
∴ p(3)=0
= 27-3×9+12-12
= 27-27+12-12
= 0
[tex]\bold{\boxed{\blue{∵p(x) = 0 }}}[/tex]
Hence proved that g(x) is a factor of p(x).
[tex]\pink{\large\mathfrak { \: \: \: \: !! \: hope \: it \: helps \: you \:!!}}[/tex]
Answer:
[tex]\mathtt\green{SOLUTION:-}[/tex]
[tex] \mathtt{x – 3 = 0}[/tex]
[tex]\mathtt{x = 0 + 3}[/tex]
[tex] \mathtt{x = 3}[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex]\mathtt{NOW \: SUBSTITUTE \: THE \: VALUE \: OF \: X}[/tex]
[tex] \mathtt \green{ = {x}^{3} – {3x}^{2} + 4x – 12 }[/tex]
[tex] \mathtt \green{ = {3}^{3} – 3 \times {3}^{2} + 4 \times 3 – 12 }[/tex]
[tex] \mathtt \green{ = 27 – 27 + 12 – 12}[/tex]
[tex] \mathtt \green{ = 0}[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex]\mathtt{YES, X-3 \: IS \: THE \: FACTOR \: OF \: THIS \: POLYNOMIAL}[/tex]