# perimeter of rectangle is 120 cm if breath of the rectangle is 14 cm find its length and area of rectangle​

perimeter of rectangle is 120 cm if breath of the rectangle is 14 cm find its length and area of rectangle​

### 2 thoughts on “perimeter of rectangle is 120 cm if breath of the rectangle is 14 cm find its length and area of rectangle​”

length = 46cm

Step-by-step explanation:

I hope my answer is correct ☺️

2. Given : The Perimeter of Rectangle is 120 cm & the Breadth of Rectangle is 14 cm .

Exigency to find : Length and Area of Rectangle .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let’s Consider the Length of Rectangle be x cm .

⠀⠀Finding Length of Rectangle :

$$\dag\:\:\it{ As,\:We\:know\:that\::}\\$$

$$\qquad \dag\:\:\bigg\lgroup \sf{Perimeter _{(Rectangle)} \:: 2( l + b) }\bigg\rgroup \\\\$$

⠀⠀Here l is the Length of Rectangle & b is the Breadth of Rectangle & we know the Perimeter of Rectangle is 120 cm

⠀⠀⠀⠀⠀⠀$$\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\$$

$$\qquad \longmapsto \sf 120 = 2( x + 14 ) \\$$

$$\qquad \longmapsto \sf \cancel {\dfrac{120}{2}} = ( x + 14 ) \\$$

$$\qquad \longmapsto \sf 60 = ( x + 14 ) \\$$

$$\qquad \longmapsto \sf 60 – 14 = x \\$$

$$\qquad \longmapsto \frak{\underline{\purple{\:x = 46 cm }} }\bigstar \\$$

Therefore,

⠀⠀⠀⠀⠀$$\therefore {\underline{ \mathrm {\:Length \:of\:Rectangle \:is\:\bf{46\:cm}}}}\\$$

⠀⠀Finding Area of Rectangle :

$$\dag\:\:\it{ As,\:We\:know\:that\::}\\$$

$$\qquad \dag\:\:\bigg\lgroup \sf{ Area_{(Rectangle)} \:: l \times b }\bigg\rgroup \\\\$$

⠀⠀Here l is the Length of Rectangle & b is the Breadth of Rectangle

⠀⠀⠀⠀⠀⠀$$\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\$$

$$\qquad \longmapsto \sf Area = 46 \times 14 \\$$

$$\qquad \longmapsto \frak{\underline{\purple{\:Area = 644 cm^2 }} }\bigstar \\$$

Therefore,

⠀⠀⠀⠀⠀$$\therefore {\underline{ \mathrm {\:Area \:of\:Rectangle \:is\:\bf{644\:cm^2}}}}\\$$

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

$$\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\$$

$$\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth$$

$$\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth)$$

$$\qquad \leadsto \sf Area_{(Square)} = Side \times Side$$

$$\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side$$

$$\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )$$

$$\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height$$

$$\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height$$

$$\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2}$$

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀