shivam wants to deposit rs, 5000 for consecutive years, the compound interest rate received for these years would be 3% ,2% and 1% respectively then find the amount he will received at the end About the author Isabelle
Answer : ₹5,300 Explanation : When the rate on an amount is compounded in consecutive years we use, [tex] \sf \: Amount = p \bigg(1 + \dfrac{r_1}{100} \bigg)\bigg(1 + \dfrac{r_2}{100} \bigg)[/tex] Where, [tex] \sf \: r_1 \: and \: r_2[/tex] denotes the rate of consecutive years. So, The amount Shivam will recives after 3 years is given by, [tex] \sf \: Amount = p \bigg(1 + \dfrac{r_1}{100} \bigg)\bigg(1 + \dfrac{r_2}{100} \bigg) \bigg(1 + \dfrac{r_3}{100} \bigg)[/tex] Where, p(principal) = 5,000 [tex] \sf \: r_1, \: r_2 \: and \: r_3[/tex] are the rate of three consecutive years 3%, 2%, and 1% By the given values, [tex]\sf \longrightarrow \: 5000\bigg(1 + \dfrac{3}{100} \bigg)\bigg(1 + \dfrac{2}{100} \bigg)\bigg(1 + \dfrac{1}{100} \bigg) [/tex] [tex]\sf \longrightarrow \: 5000\bigg( \dfrac{103}{100} \bigg)\bigg( \dfrac{102}{100} \bigg)\bigg( \dfrac{101}{100} \bigg)[/tex] [tex] \sf \longrightarrow \: 5000(1.03)(1.02)(1.01)[/tex] [tex] \sf \longrightarrow \: 5300(approx.)[/tex] Required answer ≈ ₹5,300 Reply
Answer :
₹5,300
Explanation :
When the rate on an amount is compounded in consecutive years we use,
[tex] \sf \: Amount = p \bigg(1 + \dfrac{r_1}{100} \bigg)\bigg(1 + \dfrac{r_2}{100} \bigg)[/tex]
Where,
[tex] \sf \: r_1 \: and \: r_2[/tex] denotes the rate of consecutive years.
So,
The amount Shivam will recives after 3 years is given by,
[tex] \sf \: Amount = p \bigg(1 + \dfrac{r_1}{100} \bigg)\bigg(1 + \dfrac{r_2}{100} \bigg) \bigg(1 + \dfrac{r_3}{100} \bigg)[/tex]
Where,
By the given values,
[tex]\sf \longrightarrow \: 5000\bigg(1 + \dfrac{3}{100} \bigg)\bigg(1 + \dfrac{2}{100} \bigg)\bigg(1 + \dfrac{1}{100} \bigg) [/tex]
[tex]\sf \longrightarrow \: 5000\bigg( \dfrac{103}{100} \bigg)\bigg( \dfrac{102}{100} \bigg)\bigg( \dfrac{101}{100} \bigg)[/tex]
[tex] \sf \longrightarrow \: 5000(1.03)(1.02)(1.01)[/tex]
[tex] \sf \longrightarrow \: 5300(approx.)[/tex]
Required answer ≈ ₹5,300