Q26)Find the compoundinterest on Rs60,000 at the rateof 10% per annum for 1.5 yearswhen interest is compoundedsemi-annually. About the author Emery
Given :- Principal = ₹60,000 Rate = 10% Time = 1.5 years Interest is compounded semi annually (meaning half yearly) Aim :- To find the Compound interest on the principal Formula to use :- In order to find the Compound interest we first have to find the amount [tex]\sf{Amount} = \sf{Principal}\bigg(1 + \dfrac{\sf{rate}}{200} \bigg)^{2\times \sf{time}}[/tex] Compound interest = Amount – Principal Answer :- Let us substitute the values to find the amount Let amount be A [tex]\implies\sf{A} = 60000\bigg(1+\dfrac{10}{200} \bigg)^{2\times1.5}[/tex] By taking the LCM, [tex]\implies\sf{A} = 60000\bigg(\dfrac{200+10}{20}\bigg)^{3}[/tex] By adding, [tex]\implies\sf{A} = 60000\bigg(\dfrac{210}{200} \bigg)^{3}[/tex] By reducing to the lowest terms, [tex]\implies \sf{A} = 60000\bigg(\dfrac{21}{20} \bigg)^{3}[/tex] [tex]\implies \sf{A} = 60000 \times \dfrac{21}{20} \times \dfrac{21}{20} \times \dfrac{21}{20}[/tex] By cancelling, we get :- [tex]\implies \sf{A} = 69457.5[/tex] Therefore, Amount = ₹69457.5 Now that we have the value of the Amount and the Principal, Compound interest :- [tex]\implies 69457.5 – 60000[/tex] [tex]\implies 9457.5[/tex] Some more formulas :- When interest is compounded Annually :- [tex]\implies \sf{Amount} = \sf{Principal}\bigg(1+\dfrac{\sf{rate}}{100} \bigg)^{\sf{time}}[/tex] When interest is compounded quarterly :- [tex]\implies \sf{Amount} = \sf{Principal}\bigg(1 + \dfrac{\sf{rate}}{400} \bigg)^{4\times\sf{time}}[/tex] Simple interest :- [tex]\implies \sf{Simple \: Interest} = \dfrac{\sf{Principal}\times \sf{Rate} \times \sf{Time}}{100}[/tex] Reply
Given :-
Aim :-
Formula to use :-
In order to find the Compound interest we first have to find the amount
[tex]\sf{Amount} = \sf{Principal}\bigg(1 + \dfrac{\sf{rate}}{200} \bigg)^{2\times \sf{time}}[/tex]
Answer :-
Let us substitute the values to find the amount
[tex]\implies\sf{A} = 60000\bigg(1+\dfrac{10}{200} \bigg)^{2\times1.5}[/tex]
By taking the LCM,
[tex]\implies\sf{A} = 60000\bigg(\dfrac{200+10}{20}\bigg)^{3}[/tex]
By adding,
[tex]\implies\sf{A} = 60000\bigg(\dfrac{210}{200} \bigg)^{3}[/tex]
By reducing to the lowest terms,
[tex]\implies \sf{A} = 60000\bigg(\dfrac{21}{20} \bigg)^{3}[/tex]
[tex]\implies \sf{A} = 60000 \times \dfrac{21}{20} \times \dfrac{21}{20} \times \dfrac{21}{20}[/tex]
By cancelling, we get :-
[tex]\implies \sf{A} = 69457.5[/tex]
Therefore,
Now that we have the value of the Amount and the Principal,
Compound interest :-
[tex]\implies 69457.5 – 60000[/tex]
[tex]\implies 9457.5[/tex]
Some more formulas :-
[tex]\implies \sf{Amount} = \sf{Principal}\bigg(1+\dfrac{\sf{rate}}{100} \bigg)^{\sf{time}}[/tex]
[tex]\implies \sf{Amount} = \sf{Principal}\bigg(1 + \dfrac{\sf{rate}}{400} \bigg)^{4\times\sf{time}}[/tex]
[tex]\implies \sf{Simple \: Interest} = \dfrac{\sf{Principal}\times \sf{Rate} \times \sf{Time}}{100}[/tex]