Q1.If α (alpha) and β (beta) be two roots of the equation x² – 64x + 256 = 0. Then the value of –

(a.) (α³/β⁵)¹/⁸ + (β

Q1.If α (alpha) and β (beta) be two roots of the equation x² – 64x + 256 = 0. Then the value of –

(a.) (α³/β⁵)¹/⁸ + (β³/α⁵)¹/⁸

(b.) (256α/α² + 256) + (256β/β² + 256)

About the author
Julia

2 thoughts on “Q1.If α (alpha) and β (beta) be two roots of the equation x² – 64x + 256 = 0. Then the value of –<br /><br /> (a.) (α³/β⁵)¹/⁸ + (β”

  1. Explanation:

    ✬ Values = 2 & 8 Respectively ✬

    Step-by-step explanation:

    Given:

    Alpha and beta are the two roots of equation.

    Equation is x² – 64x + 256 = 0

    To Find:

    Value of

    (α³/β⁵)¹/⁸ + (β³/α⁵)¹/⁸

    (256α/α² + 256) + (256β/β² + 256)

    Solution: Basic formulae and concepts to be used here

    α + β = –b/a

    αβ = c/a

    m⁵ × m³ = m(³ + ⁵) ← If bases are same then powers will be added.

    m² × n² = (mn)² ← If bases are different and powers are same.

    Let’s solve the first one –

    ➟ (α³/β⁵)¹/⁸ + (β³/α⁵)¹/⁸

    ➟ α⅜ / β⅝ + β⅜ / α⅝ { taking LCM }

    ➟ α⅜ × β⅝ + β⅝ × β⅜ / β⅝ × α⅝

    ➟ α¹ + β¹ / αβ⅝

    ➟ α + β / αβ⅝

    ➟ –b/a / (c/a)⅝

    ➟ –(–64) / (256)⅝

    ➟ 64 / {(16)²}⅝

    ➟ 64 / [{(2)⁴}²]⅝

    ➟ 64 / 2⁵

    ➟ 64 / 32 = 2

    Hence, the value of (α³/β⁵)¹/⁸ + (β³/α⁵)¹/⁸ is 2.

    _________________________

    Let’s move to the second question.

    (256α/α² + 256) + (256β/β² + 256)

    ➮ Given equation is x² – 64x + 256 = 0

    Putting the value α in the place or x in above equation.

    We got α² – 64α + 256 = 0

    ➮ α² – 64α + 256 = 0

    ➮ α² + 256 = 64α

    Multiplying both sides by 4.

    ➮ 4 × (α² + 256) = 4 × 64α

    ➮ 4 x (α² + 256) = 256α

    ➮ 4 = 256α / α² + 256ㅤㅤㅤㅤㅤ(eqⁿ i )

    Now again

    Putting the value β in the place or x in above equation.

    We got β² – 64β + 256 = 0

    ➯ β² – 64β + 256 = 0

    ➯ β² + 256 = 64β

    Multiplying both sides by 4.

    ➯ 4 × (β² + 256) = 4 × 64β

    ➯ 4 = 256β / β² + 256ㅤㅤㅤㅤㅤ(eqⁿ ii )

    Let’s put the values of both equations in the second question.

    ⟹ (256α/α² + 256) + (256β/β² + 256)

    ⟹ 4 + 4

    =8

    Hence, the value of (256α/α² + 256) + (256β/β² + 256) is 8.

    Reply

Leave a Reply to Maya Cancel reply