Q. 11. From a group of swans,7/2times the square root of their total number are playing on the bank of apond. The remaining 2 swans are in the water. Find the total number of swans. About the author Claire
[tex]\large\underline{\sf{Solution-}}[/tex] Let assume that total number of swans be x. [tex] \sf \: Number \: of \: swans \: playing \: on \: bank \: of \: pond = \dfrac{7}{2} \sqrt{x} [/tex] [tex] \sf \: Number \: of \: swans \: in \: water = 2[/tex] So, [tex]\rm :\longmapsto\:\dfrac{7}{2} \sqrt{x} + 2 = x[/tex] [tex]\rm :\longmapsto\:7 \sqrt{x} + 4 = 2x [/tex] [tex]\rm :\longmapsto\:2x – 7 \sqrt{x} – 4 = 0[/tex] [tex]\rm :\longmapsto\:2 {( \sqrt{x}) }^{2} – 7 \sqrt{x} – 4 = 0[/tex] [tex]\rm :\longmapsto\:2 {( \sqrt{x}) }^{2} – 8 \sqrt{x} + \sqrt{x} – 4 = 0[/tex] [tex]\rm :\longmapsto\:2 \sqrt{x}( \sqrt{x} – 4) + 1( \sqrt{x} – 4) = 0 [/tex] [tex]\rm :\longmapsto\:( \sqrt{x} – 4)(2 \sqrt{x} + 1) = 0[/tex] [tex]\rm :\longmapsto\: \sqrt{x} = 4 \: \: \: or \: \: \: \sqrt{x} = – \dfrac{1}{2} \: \: \{rejected \}[/tex] [tex]\rm :\longmapsto\: \sqrt{x} = 4[/tex] [tex]\bf\implies \:x = 16[/tex] [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \underbrace{ \boxed{ \bf{Number \: of \: swans = 16}}}[/tex] Basic Concept Used :- Writing System of Equation from Word Problem. 1. Understand the problem. Understand all the words used in stating the problem. Understand what you are asked to find. 2. Translate the problem to an equation. Assign a variable (or variables) to represent the unknown. Clearly state what the variable represents. 3. Carry out the plan and solve the problem. Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Let assume that total number of swans be x.
[tex] \sf \: Number \: of \: swans \: playing \: on \: bank \: of \: pond = \dfrac{7}{2} \sqrt{x} [/tex]
[tex] \sf \: Number \: of \: swans \: in \: water = 2[/tex]
So,
[tex]\rm :\longmapsto\:\dfrac{7}{2} \sqrt{x} + 2 = x[/tex]
[tex]\rm :\longmapsto\:7 \sqrt{x} + 4 = 2x [/tex]
[tex]\rm :\longmapsto\:2x – 7 \sqrt{x} – 4 = 0[/tex]
[tex]\rm :\longmapsto\:2 {( \sqrt{x}) }^{2} – 7 \sqrt{x} – 4 = 0[/tex]
[tex]\rm :\longmapsto\:2 {( \sqrt{x}) }^{2} – 8 \sqrt{x} + \sqrt{x} – 4 = 0[/tex]
[tex]\rm :\longmapsto\:2 \sqrt{x}( \sqrt{x} – 4) + 1( \sqrt{x} – 4) = 0 [/tex]
[tex]\rm :\longmapsto\:( \sqrt{x} – 4)(2 \sqrt{x} + 1) = 0[/tex]
[tex]\rm :\longmapsto\: \sqrt{x} = 4 \: \: \: or \: \: \: \sqrt{x} = – \dfrac{1}{2} \: \: \{rejected \}[/tex]
[tex]\rm :\longmapsto\: \sqrt{x} = 4[/tex]
[tex]\bf\implies \:x = 16[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \underbrace{ \boxed{ \bf{Number \: of \: swans = 16}}}[/tex]
Basic Concept Used :-
Writing System of Equation from Word Problem.
1. Understand the problem.
2. Translate the problem to an equation.
3. Carry out the plan and solve the problem.